A stochastic model for operating room planning with elective and emergency demand for surgery
Résumé
This paper describes a stochastic model for Operating Room (OR) planning with two types of demand for surgery: elective surgery and emergency surgery. Elective cases can be planned ahead and have a patient-related cost depending on the surgery date. Emergency cases arrive randomly and have to be performed on the day of arrival. The planning problem consists in assigning elective cases to different periods over a planning horizon in order to minimize the sum of elective patient related costs and overtime costs of operating rooms. A new stochastic mathematical programming model is first proposed. We then propose a Monte Carlo optimization method combining Monte Carlo simulation and Mixed Integer Programming. The solution of this method is proved to converge to a real optimum as the computation budget increases. Numerical results show that important gains can be realized by using a stochastic OR planning model.