Random quantum channels I: graphical calculus and the Bell state phenomenon - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Random quantum channels I: graphical calculus and the Bell state phenomenon

Résumé

This paper is the first of a series where we study quantum channels from the random matrix point of view. We develop a graphical tool that allows us to compute the expected moments of the output of a random quantum channel. As an application, we study variations of random matrix models introduced by Hayden \cite{hayden}, and show that their eigenvalues converge almost surely. In particular we obtain for some models sharp improvements on the value of the largest eigenvalue, and this is shown in a further work to have new applications to minimal output entropy inequalities.
Fichier principal
Vignette du fichier
1.pdf (315.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00384127 , version 1 (14-05-2009)
hal-00384127 , version 2 (21-06-2009)

Identifiants

Citer

Benoît Collins, Ion Nechita. Random quantum channels I: graphical calculus and the Bell state phenomenon. 2009. ⟨hal-00384127v1⟩

Collections

ICJ
637 Consultations
469 Téléchargements

Altmetric

Partager

More