On linear combinations of lambda-terms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

On linear combinations of lambda-terms

Résumé

We define an extension of lambda-calculus with linear combinations, endowing the set of terms with a structure of R-module, where R is a fixed set of scalars. Terms are moreover subject to identities similar to usual pointwise definition of linear combinations of functions with values in a vector space. We then extend beta-reduction on those algebraic lambda-terms as follows: at + u reduces to at + u as soon as term t reduces to t and a is a non-zero scalar. We prove that reduction is confluent. Under the assumption that the set R of scalars is positive (i.e. a sum of scalars is zero iff all of them are zero), we show that this algebraic lambda-calculus is a conservative extension of ordinary lambda-calculus. On the other hand, we show that if R admits negative elements, then every term reduces to every other term. We investigate the causes of that collapse, and discuss some possible fixes.
Fichier principal
Vignette du fichier
alglam2.pdf (242.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00383896 , version 1 (13-05-2009)

Identifiants

  • HAL Id : hal-00383896 , version 1

Citer

Lionel Vaux. On linear combinations of lambda-terms. 18th International Conference, RTA 2007, Paris, France, June 26-28, 2007. Proceedings, Jun 2007, Paris, France. pp.374-388. ⟨hal-00383896⟩
158 Consultations
82 Téléchargements

Partager

More