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On linear combinations of λ-terms

Lionel Vaux

Institut de Mathématiques de Luminy, CNRS UMR 6206, France,
vaux@iml.univ-mrs.fr

Abstract. We define an extension of λ-calculus with linear combina-
tions, endowing the set of terms with a structure of R-module, where R

is a fixed set of scalars. Terms are moreover subject to identities simi-
lar to usual pointwise definition of linear combinations of functions with
values in a vector space. We then extend β-reduction on those algebraic
λ-terms as follows: at + u reduces to at′ + u as soon as term t reduces to
t′ and a is a non-zero scalar. We prove that reduction is confluent.
Under the assumption that the set R of scalars is positive (i.e. a sum of
scalars is zero iff all of them are zero), we show that this algebraic λ-
calculus is a conservative extension of ordinary λ-calculus. On the other
hand, we show that if R admits negative elements, then every term re-
duces to every other term. We investigate the causes of that collapse,
and discuss some possible fixes.

Preliminary definitions and notations. Recall that a rig (also known as “semi-
ring with zero and unit”) is the same as a ring, without the condition that every
element admits an opposite for addition. Let R be a rig. We write R• for R\ {0}.
We denote by letters a, b, c the elements of R, and say that R is positive if, for
all a, b ∈ R, a+ b = 0 implies a = 0 and b = 0. An example of positive rig is N,
the set of natural numbers, with usual addition and multiplication.

If i, j ∈ N, we write [i; j] for the set {k ∈ N; i ≤ k ≤ j}. Also, we write
application of λ-terms à la Krivine: (s) t denotes the application of term s to
term t.

1 Introduction

Sums of terms arise naturally in the study of differentiation in λ-calculus [ER03]
or λµ-calculus [Vau06]. In this setting, non-deterministic choice provides a pos-
sible computational interpretation of sum. In differential λ-calculus, however, a
more general pattern is introduced: the set of terms is endowed with a structure
of R-module, where R is a commutative rig, and one can form linear combina-
tions of terms. Moreover, in the same way as functions with values in a vector
space also form a vector space with operations defined pointwise, we have the
following two equalities on terms:

λx

(
n∑

i=1

aisi

)
=

n∑

i=1

aiλx si (1)



and (
n∑

i=1

aisi

)
u =

n∑

i=1

ai (si)u (2)

for all linear combination
∑n

i=1 aisi of terms. This mimics the quantitative se-
mantics of λ-calculus in finiteness spaces [Ehr05]: types are interpreted by partic-
ular vector spaces or, more generally, modules, and terms are mapped to analytic
functions defined by power series on these spaces.

Apart from the notion of differentiation, one important feature of the above-
mentioned works is the way β-reduction is extended to such linear combinations
of terms. Among terms, some are considered simple: they contain no sum in
linear position, so that nor (1) nor (2) applies; hence they are intrinsically not
sums. These form a basis of the R-module of terms. Reduction → is then the
least contextual relation such that: if s is a simple term, then

(λx s) t→ s [t/x] (3)

and, if a ∈ R• is a non-zero scalar,

s→ s′ implies as+ t→ as′ + t. (4)

The condition a 6= 0 in that last case ensures that → actually reduces something,
so that reduction is not trivially reflexive.

The previous definition is both natural in presence of coefficients, and tech-
nically efficient. For instance, it is particularly well suited for proving confluence
via usual Tait-Martin Löf technique: introduce a parallel version _ of → such
that → ⊂ _ ⊂ →∗, and prove that _ has the diamond property. Here _ is
defined on sums as follows:

n∑

i=1

aisi _

n∑

i=1

ais
′

i as soon as, ∀i ∈ [1;n], si is simple and si _ s′i. (5)

This variant of (4) allows to close the following diagram:

s+ s′ _ 2s′_ _

s+ s′′ _ s′ + s′′

assuming s _ s′ _ s′′ are simple terms. This would not hold if we had forced
the si’s in (5) to be distinct simple terms — that condition would amount to
reduce each element of the base of simple terms, in parallel, which may seem a
more natural choice at first.

In [Vau06], however, the author proved that this reduction behaves strangely
as soon as the rig of scalars admits negative elements: if −1 ∈ R (so that 1 +
(−1) = 0), then for all terms s and t, s→∗ t. Also, it does not accommodate well
with normalization: assume s → s′ and R contains positive rational numbers;
then

s =
1

2
s+

1

2
s →

1

2
s+

1

2
s′ →

1

4
s+

3

4
s′ → . . .

which forbids strong normalization.
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Contributions. In this paper, we give a framework for the study of terms with
linear combinations, which aims to be more precise and formal than that devel-
oped in [ER03] or [Vau06]. Also, we do not consider differentiation nor classical
control operators, and only focus on the algebraic structure of terms and the
interaction between coefficients and reduction. We call the obtained system al-
gebraic λ-calculus.

In section 2, we formalize the definition of the R-module of terms; in partic-
ular, we implement identities (1) and (2), orienting then from left to right, and
identify terms up to equality of the canonical forms thus obtained. This definition
is elementary enough that it should be easily implemented in a logical system
such as [Coq]. In section 3 we define reduction, using rule (4) in the case of a
sum, and discuss conservativity w.r.t. usual β-reduction. In section 4, we briefly
review sufficient conditions for normalization, postponing a full proof of strong
normalization until Appendix A. Last, we discuss possible other approaches and
further work in section 5.

Most of the results of this paper were already present in [Vau06], and some
can be traced back to [ER03]. In those two previous works, however, the focus
was on differentiation and the presence of linear combinations of terms and their
effects on reduction were considered of marginal interest. This may in particular
explain why some of the problems we insist on in this paper eluded [ER03].

2 Linear combinations of terms

In this section, we introduce the set of terms of algebraic λ-calculus in several
steps. First we give a grammar of terms, on which we define α-equivalence and
substitution as in Krivine’s [Kri90]. Then we define canonical forms of terms;
this endows the set of terms with a structure of module, by identifying terms up
to equality of canonical forms.

2.1 Raw terms

Let be given a denumerable set V of variables. We use letters among x, y, z to
denote variables.

Definition 1. The set LR of raw terms of algebraic λ-calculus over R is induc-
tively defined by the following rules:

– any variable x is a term, i.e. V ⊂ LR;
– if x ∈ V and σ ∈ LR, then λxσ ∈ LR;
– if σ, τ ∈ LR then (σ) τ ∈ LR;
– 0 ∈ LR;
– if a ∈ R and σ ∈ LR then aσ ∈ LR;
– if σ and τ ∈ LR, then σ + τ ∈ LR.

Definition 2. We define free variables of terms as follows:

– variable x is free in term y if x = y;
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– variable x is free in λy σ if x 6= y and x is free in σ;
– variable x is free in (σ) τ if x is free in σ or in τ ;
– no variable is free in 0;
– variable x is free in aσ if x is free in σ;
– variable x is free in term σ + τ if x is free in σ or in τ .

From this definition of free variables, we derive α-equivalence and substi-
tution as in [Kri90]. We write σ ∼ τ when σ is α-convertible to τ , and we
write σ [τ/x] for the (capture-avoiding) substitution of τ for x in σ. More gen-
erally, if x1, . . . , xn are distinct variables and τ1, . . . , τn are terms, we write
σ [τ1, . . . , τn/x1, . . . , xn] for the simultaneous substitution of each τi for each
xi in σ. Recall the following definitions and properties from [Kri90].

Proposition 1. For all terms σ, τ1, . . . , τn, υ1, . . . , υp and all distinct variables
x1, . . . , xn, y1, . . . , yp,

σ [τ1, . . . , τn/x1, . . . , xn] [υ1, . . . , υp/y1, . . . , yp]
∼ σ [υ1, . . . , υp, τ

′

1, . . . , τ
′

n/y1, . . . , yp, x1, . . . , xn]

where τ ′i = τi [υ1, . . . , υp/y1, . . . , yp] .

Definition 3. A binary relation r on raw terms is said contextual if it satisfies
the following conditions:

– x r x;
– λxσ r λxσ′ as soon as σ r σ′;
– (σ) τ r (σ′) τ ′ as soon as σ r σ′ and τ r τ ′;
– 0 r 0;
– aσ r aσ′ as soon as σ r σ′;
– σ + τ r σ′ + τ ′ as soon as σ r σ′ and τ r τ ′.

Proposition 2. If r is a contextual relation, then σ [τ/x] r σ [τ ′/x] as soon as
τ r τ ′.

2.2 Permutative equality

If σ1, . . . , σn ∈ LR, then we write σ1 + . . .+ σn for σ1 + (. . .+ σn). If, moreover,
a1, . . . , an ∈ R then we write

∑n

i=1 aiσi for the term a1σ1 + . . .+ anσn + 0.
Linear combinations

∑n

i=1 aiσi should be thought of as multisets of couples,
i.e. we identify

∑n

i=1 aiσi with all
∑n

i=1 af(i)σf(i) where f is any permutation
of [1;n]. This is more formally stated in the following definition.

Definition 4. Permutative equality ≡ ⊆ LR × LR is the least contextual equiva-
lence relation on raw terms such that:

– σ ≡ τ as soon as σ ∼ τ ;
– σ + τ ≡ τ + σ for all σ, τ ∈ LR;
– (σ + τ) + υ ≡ σ + τ + υ for all σ, τ, υ ∈ LR.
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Notice that
∑n

i=1 aiσi ≡
∑p

j=1 bjτj iff n = p and, for all j ∈ [1;n], bj = af(j),
with f some fixed permutation of [1;n]. Also, since free variables of a sum do
not depend on the order of the summands, ≡ preserves free variables.

Permutative equality is the basic equality intended on terms. It states that
we consider terms up to α-equality and that we form linear combinations up to
associativity and commutativity of sum. We write ΛR for the set of terms with
equality ≡. This means that as long we consider σ and τ as terms in ΛR, we say
they are equal if σ ≡ τ . A function defined on ΛR is a function with domain LR

which is invariant by ≡.

Proposition 3. Substitution is defined on ΛR: if σ ≡ σ′ and τi ≡ τ ′i , for all i ∈
[1;n], then σ [τ1, . . . , τn/x1, . . . , xn] ≡ σ′ [τ ′1, . . . , τ

′

n/x1, . . . , xn] for all distinct
variables x1, . . . , xn.

In the following, if σ and τ ∈ ΛR, we define

δ≡σ,τ =

{
1 if σ ≡ τ
0 otherwise

2.3 The R-module of terms

In this subsection, we introduce the algebraic content of the calculus: we endow
the set of terms with a structure of R-module, enjoying usual identities between
linear combinations together with (1) and (2). For that purpose, we define canon-
ical forms of terms, so that equality of terms (in the abovementioned algebraic
sense) amounts to permutative equality of canonical forms.

Definition 5. Atomic terms and canonical terms are defined as follows:

– any variable x is an atomic term;
– if x ∈ V and s is an atomic term, then λx s is an atomic term;
– if s is an atomic term and T is a canonical term, then (s)T is an atomic

term;
– if a1, . . . , an ∈ R• and s1, . . . , sn are n pairwise distinct (6≡) atomic terms,

then
∑n

i=1 aisi is a canonical term.

We consider atomic and canonical terms up to permutative equality. We
write AR for the set of atomic terms and CR for the set of canonical terms, both
endowed with ≡ as identity relation. One defines an injection from atomic terms
into canonical terms, mapping s to the “singleton” 1s+ 0. In the following, we
write σ for term 1σ + 0.

Definition 6. Let σ =
∑n

i=1 aisi be a linear combination of atomic terms. For
all atomic term s, we call coefficient of s in σ the scalar

n∑

i=1

δ≡s,si
ai.
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Then we define

cansum(σ) =

p∑

j=1

bjtj

where {t1, . . . , tp} is the set (modulo ≡) of those si with a non-zero coefficient
in σ and, for all j ∈ [1; p], bj is the coefficient of tj in σ.

Hence, if σ is a linear combination of atomic terms, then cansum(σ) is a
canonical term.

Definition 7. Canonization of terms can : ΛR −→ CR is given by

– can(x) = x;
– if can(σ) =

∑n

i=1 aisi then can(λxσ) =
∑n

i=1 aiλx si;
– if can(σ) =

∑n

i=1 aisi and can(τ) = T then can((σ) τ) =
∑n

i=1 ai (si)T ;
– can(0) = 0;
– if can(σ) =

∑n

i=1 aisi then can(aσ) = cansum (
∑n

i=1(aai)si);

– if can(σ) =
∑n

i=1 aisi and can(τ) =
∑n+p

i=n+1 aisi then

can(σ + τ) = cansum
(∑n+p

i=1 aisi

)
.

It is easily checked that this definition is invariant by ≡.

Proposition 4. Canonization enjoys the following properties.

(i) Variables free in can(σ) are also free in σ. The converse does not hold in
general.

(ii) If s is an atomic term, then can(s) ≡ s.
(iii) If S is a canonical term, then can(S) ≡ S; hence can(can(σ)) ≡ can(σ) for

all term σ.
(iv) For all terms σ and τ and all variable x,

can(σ [τ/x]) ≡ can(can(σ) [can(τ)/x]).

Definition 8. Algebraic equality is permutative equality of canonical forms: σ
▽

=
τ if can(σ) ≡ can(τ).

Although it does not preserve free variables, algebraic equality is a contextual
equivalence relation. Restricted to canonical terms, it is the same as ≡.

Definition 9. A simple term is a term σ such that can(σ) = s with s atomic,
or equivalently such that there exists an atomic term s with s

▽

= σ. We write ∆R

for the set of simple terms, with equality
▽

= and R〈∆R〉 for the set of all terms,
with equality

▽

=, which is the free R-module generated by (∆R,
▽

=).

Lemma 1. If terms σ, σ′, τ and τ ′ are such that σ
▽

= σ′ and τ
▽

= τ ′, then, for
all variable x, σ [τ/x]

▽

= σ′ [τ ′/x].
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Proof. This is a straightforward application of Proposition 4, (iv).

Hence, algebraic equality is compatible with substitution, i.e. substitution is
defined on R〈∆R〉. We now extend the notion of coefficient as follows:

Definition 10. Let σ be a simple term and s an atomic term such that σ
▽

= s.
We define the coefficient of σ in τ , denoted by τ(σ), as the coefficient of s in
can(τ).

We call support of σ the set of those simple terms with a non-zero coefficient
in σ:

Supp(σ) = {τ ∈ ∆R; σ(τ) 6= 0}.

Definition 11. If X is a set (modulo
▽

=) of simple terms, we write R〈X 〉 for
the set of linear combinations of elements of X , i.e.

R〈X 〉 =

{
σ

▽

=

n∑

i=1

aiσi; ∀i ∈ [1;n], σi ∈ X

}

or, equivalently,
R〈X 〉 = {σ ∈ R〈∆R〉; Supp(σ) ⊆ X} .

One may introduce a convergent rewrite system (modulo associativity and
commutativity of sum [PS81]) R on terms in ΛR, such that σ

▽

= τ iff NFR(σ) ≡
NFR(τ), where NFR stands for “normal form in R”. This is left as an easy
exercise for the reader (beware that we do not ask NFR(σ) = can(σ)). Apart
from the lack of space, we do not use this approach simply because such a rewrite
system R would not be part of the reduction rules we introduce thereafter: we
will define reduction of terms as (roughly) β-reduction up to

▽

=, and not as the
union of β-reduction and canonization.

3 Reductions

In this section, we define reduction using (3) and (4) as key reduction rules:
this captures the definition of reduction in [ER03], minus differentiation, in the
setting of algebraic λ-calculus.

3.1 Reduction and linear combinations of terms

We call algebraic relation from simple terms to terms any subset of ∆R × R〈∆R〉
(which is invariant under

▽

=). If r is an algebraic relation from simple terms to
terms, σ r σ′ iff there are t ∈ AR and T ′ ∈ CR such that σ

▽

= t, σ′ ▽

= T ′ and
t r T ′.

Similarly, we call algebraic relation from terms to terms any subset of R〈∆R〉×
R〈∆R〉. Again, such a relation is uniquely defined by its restriction to CR × CR.
Given an algebraic relation r from simple terms to terms we define two new
algebraic relations r and r̃ from terms to terms by:

7



– σ r σ′ if σ
▽

=
∑n

i=1 aisi and σ′ ▽

=
∑n

i=1 aiS
′

i, where for all i ∈ [1;n], si is
atomic, S′

i is canonical and si r S′

i;
– σ r̃ σ′ if σ

▽

= at+ U and σ′ ▽

= aT ′ + U , where a 6= 0, t is atomic, T ′ and U
are canonical and t r T ′.

We cannot define reduction by induction on terms: if there are a, b ∈ R• such
that a + b = 0 then 0

▽

= aσ + bσ for all σ ∈ R〈∆R〉; hence, by rule (4), 0 may
reduce. We rather define simple term reduction → by induction on the depth of
the fired redex, so that reduction of terms is given by →̃.

Definition 12. We define an increasing sequence of algebraic relations from
simple terms to terms by the following statements. →0 is the empty relation.
Assume →k is defined. Then we set σ →k+1 σ

′ as soon as one of the following
holds:

– σ
▽

= λx s and σ′ ▽

= λxS′ with s→k S
′;

– σ
▽

= (s)T and σ′ ▽

= (S′)T with s→k S
′, or σ′ ▽

= (s)T ′ with T →̃k T
′;

– σ
▽

= (λx s)T and σ′ ▽

= s [T/x].

Let → =
⋃

k∈N
→k. We call one-step reduction or simply reduction, the alge-

braic relation →̃.

Proposition 5. →̃ =
⋃

k∈N
→̃k.

Lemma 2. If s ∈ AR and S′, T, T ′ ∈ CR, are such that s → S′ and T →̃ T ′

then:
λx s → λxS′

(s)T → (S′)T
(s)T → (s)T ′ (∗)

Proof. The first two relations are straightforward from the definition of →. The
same holds for relation (∗), through proposition 5.

Let →̃∗ be the reflexive and transitive closure of →̃.

Lemma 3. The relation →̃∗
is contextual.

Proof. This results from Lemma 2, using reflexivity, transitivity and the defini-
tion of can.

3.2 Confluence

We prove confluence of →̃ by usual Tait-Martin-Löf technique: introduce a par-
allel extension of reduction (in which redexes can be fired simultaneously) and
prove this enjoys the diamond property (i.e. strong confluence).

Definition 13. We define an increasing sequence of algebraic relations from
simple terms to terms by the following statements. _0 is algebraic equality.
Assume _k is defined. Then we set σ _k+1 σ

′ as soon as one of the following
holds:
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– σ
▽

= λx s and σ′ ▽

= λxS′ with s _k S
′;

– σ
▽

= (s)T and σ′ ▽

= (S′)T ′ with s _k S
′ and T _k T

′;
– σ

▽

= (λx s)T and σ′ ▽

= S′ [T ′/x] with s _k S
′ and T _k T

′.

Let _ =
⋃

k∈N
_k. We call parallel reduction the algebraic relation _.

Proposition 6. _ =
⋃

k∈N
_k.

Lemma 4. Relation _ is contextual.

Proof. Like in Lemma 2, this is just rephrasing the definitions of π and π, with
the notable exception of the application case which involves Proposition 6.

Lemma 5. (λxσ) τ _ σ′ [τ ′/x] as soon as σ _ σ′ and τ _ τ ′.

Proof. This is a straightforward consequence of Lemma 4 and the definitions of
_ and can(λxσ).

Lemma 6. →̃ ⊂ _ ⊂ →̃∗
.

Proof. →̃ ⊂ _ should be clear. _ ⊂ →̃∗
follows from contextuality of →̃∗

.

Reductions and substitution. The main property of parallel reduction is the
following one, which fails for one-step reduction.

Lemma 7. Let x be a variable and σ, τ, σ′, τ ′ be terms. If σ _ σ′ and τ _ τ ′

then
σ [τ/x] _ σ′ [τ ′/x] .

Proof. We prove by induction on k that if σ _k σ
′ and τ _ τ ′ then σ [τ/x] _

σ′ [τ ′/x] . If k = 0 then σ′ ▽

= σ
▽

= can(σ); then by Lemmas 1 and 4, and Propo-
sition 2, we have

σ [τ/x]
▽

= can(σ) [τ/x] _ can(σ) [τ ′/x]
▽

= σ′ [τ ′/x] .

Suppose the result holds for some k, then we extend it to k + 1 by inspecting
the possible cases for reduction σ _k+1 σ

′. We first address the case in which σ
is simple and σ _k+1 σ

′. Then one of the following statements applies:

– σ
▽

= λy t with y 6= x and y not free in τ , and σ′ ▽

= λy T ′ with t _k T
′; hence,

by induction hypothesis, t [τ/x] _ T ′ [τ ′/x] and we get

σ [τ/x]
▽

= λy t [τ/x] _ λy T ′ [τ ′/x]
▽

= σ′ [τ ′/x]

by Lemma 4;
– σ

▽

= (t) V and σ′ ▽

= (T ′) V ′ with t _k T ′ and V _k V ′: by induction
hypothesis, t [τ/x] _ T ′ [τ ′/x] and V [τ/x] _ V ′ [τ ′/x] and we get

σ [τ/x]
▽

= (t [τ/x]) V [τ/x] _ (T ′ [τ ′/x])V ′ [τ ′/x]
▽

= σ′ [τ ′/x]

by Lemma 4;
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– σ
▽

= (λy t)V and σ′ ▽

= T ′ [V ′/y] with t _k T
′, V _k V

′, x 6= y and y not
free in τ : by induction hypothesis, t [τ/x] _ T ′ [τ ′/x], V [τ/x] _ V ′ [τ ′/x]
and we get

σ [τ/x]
▽

= (λy t [τ/x])V [τ/x] _ (T ′ [τ ′/x]) [V ′ [τ ′/x]/y]
▽

= σ′ [τ ′/x] .

by Lemma 5.

Now assume σ _k+1 σ′. By definition, this amounts to the following: σ
▽

=∑n

i=1 aisi and σ
▽

=
∑n

i=1 aiS
′

i, with si _k+1 S
′

i for all i. We have just shown
that we then have si [τ/x] _ S′

i [τ ′/x]. We conclude by Lemma 4.

From previous lemma and inclusions →̃⊆_⊆ →̃∗, we can derive a very sim-
ilar result for →̃∗

:

Corollary 1. Let x be a variable and σ, τ, σ′, τ ′ be terms. If σ →̃∗ σ′ and τ →̃∗

τ ′ then

σ [τ/x] →̃∗
σ′ [τ ′/x] .

Church-Rosser. We finish the proof of confluence by showing that the _-reducts
of a fixed term σ all _-reduce to one of them (obtained by firing all redexes of
σ, simultaneously).

Definition 14. We define inductively on canonical term S its full parallel reduct
S↓ by:

x↓
▽

= x

(λx s) ↓
▽

= λx s↓

((λx s)T ) ↓
▽

= (s↓) [T ↓/x]

((s)T ) ↓
▽

= (s↓)T ↓ if s is a variable or an application(
n∑

i=1

aisi

)
↓

▽

=

n∑

i=1

aisi↓.

For all term σ, we set σ↓
▽

= can(σ)↓.

Lemma 8. If σ and σ′ are such that σ _ σ′, then σ′ _ σ↓.

Proof. One simply proves by induction on k that if σ _k σ
′ then σ′ _ σ↓, using

Lemma 7.

Theorem 1. Relation _ is strongly confluent. Hence, relation →̃ enjoys the
Church-Rosser property.

Proof. Strong confluence of _ is a straightforward corollary of Lemma 8. It
implies confluence of →̃ by Lemma 6.

10



Trivia. There is a case in which confluence is much easier to establish: if 1
admits an opposite −1 ∈ R. In this case, assume σ →̃∗ σ′. Since →̃∗ is algebraic
and contextual, σ′ ▽

= σ′ + (−1)σ + σ →̃∗
σ′ + (−1)σ′ + σ

▽

= σ. Hence →̃∗
is

symmetric, which obviously implies Church-Rosser. But this has little meaning:
in next section, we show that reduction becomes trivial as soon as −1 ∈ R.

3.3 Conservativity

Notice that every ordinary λ-term is also a simple term of algebraic λ-calculus.
Let Λ denote the set of all λ-terms and →β ⊂ Λ × Λ the usual β-reduction of
λ-calculus. It is clear that →β ⊂ →.

Denote by ↔ the reflexive, symmetric and transitive closure of →̃ and ↔β

the usual β-equivalence of λ-calculus.

Lemma 9. Algebraic λ-calculus preserves the equalities of λ-calculus, i.e. for all
λ-terms s and t, s↔β t implies s↔ t.

Proof. This is a straightforward consequence of the confluence of →β and the
fact that →β ⊂ →̃.

One may wonder if the reverse also holds, i.e. if equivalence classes of λ-terms
in algebraic λ-calculus are the same as in ordinary λ-calculus. If R is N, then
→̃-reductions from λ-terms are exactly →β-reductions (

▽

= only amounts to α-
conversion on λ-terms), and the result holds by the same argument as in Lemma
9. In the general case, however, a λ-term does not necessarily reduce to another
λ-term, hence the proof is not as easy.

The positive case. In the following, we prove that ↔∩ (Λ×Λ) = ↔β as soon as
R is positive.

Definition 15. We define Λ : CR −→ P(Λ) by the following statements:

Λ (x) = {x}

Λ (λx s) = {λxu; u ∈ Λ (s)}

Λ ((s)T ) = {(u) v; u ∈ Λ (s) and v ∈ Λ (T )}

Λ

(
n∑

i=1

aisi

)
=

n⋃

i=1

Λ (si) .

For all term σ, we set Λ (σ) = Λ (can(σ)).

Proposition 7. If s ∈ Λ, then Λ (s) = {s}.

Lemma 10. If R is positive and terms σ ∈ R〈∆R〉 and σ′ ∈ R〈∆R〉 are such
that σ →̃ σ′, then for all s′ ∈ Λ (σ′), either s′ ∈ Λ (σ) or there exists s ∈ Λ (σ)
such that s→β s

′.

11



Proof. The proof is by induction on the height of the reduction σ →̃ σ′. All
induction steps are straightforward, except for the extension from →k to →̃k:
assume σ

▽

= at + U and σ′ ▽

= aT ′ + U with a 6= 0 and t →k T
′. By definition,

Λ (σ′) = Λ (aT ′ + U) ⊆ Λ (T ′) ∪ Λ (U). Moreover, since R is positive, the co-
efficient of t in at + U is non-zero: hence Λ (σ) = Λ (at+ U) = Λ (t) ∪ Λ (U).
Now assume v′ ∈ Λ (σ′): either v′ ∈ Λ (U) ⊂ Λ (σ); or v′ ∈ Λ (T ′), and then, by
induction hypothesis, either v′ ∈ Λ (t) ⊂ Λ (σ) or there exists v ∈ Λ (t) ⊂ Λ (σ)
such that v → v′.

Corollary 2. If R is positive and s ∈ Λ and σ ∈ R〈∆R〉 are such that s →̃∗ σ,
then for all t ∈ Λ (σ), s→∗

β t.

Lemma 11. If σ and σ′ ∈ R〈∆R〉 are such that σ _ σ′ then σ↓ _ σ′↓.

Proof. The proof is easy and very close to that of Lemma 8.

We define iterated full reduction by σ↓0 ▽

= σ and σ↓n+1 ▽

= (σ↓n) ↓.

Lemma 12. If σ _n τ then τ →̃∗
σ↓n

Proof. The proof is by induction on n. If n = 0, σ
▽

= τ
▽

= σ↓0 and this is
reflexivity of →̃∗

. Assume the result holds at rank n. If σ _n τ _ τ ′, then,
by induction hypothesis, τ →̃∗

σ↓n. Since →̃∗
is also the transitive closure of

_, Lemma 11 entails τ↓ →̃∗
σ↓n+1. By Lemma 8, we have τ ′ _ τ↓, hence

τ ′ →̃∗ σ↓n+1.

Theorem 2. If R is positive and s, t ∈ Λ are such that s↔ t then s↔β t.

Proof. Assume s, t ∈ Λ and s ↔ t. By the Church-Rosser property of →̃ (The-
orem 1), there exists σ ∈ R〈∆R〉 such that s →̃∗

σ and t →̃∗
σ. By Lemma

12, there exists some n ∈ N such that σ →̃∗ v = s↓n. Notice that if w ∈ Λ,
then w↓ ∈ Λ, hence v ∈ Λ. We have s →̃∗

v and t →̃∗
v, hence by positivity

of R and Corollary 2, for all v′ ∈ Λ (v) there are s′ ∈ Λ (s) and t′ ∈ Λ (t) such
that s′ →∗

β v′ and t′ →∗

β v′. By proposition 7, Λ (s) = {s}, Λ (t) = {t} and
Λ (v) = {v}, hence the conclusion.

Collapse. If R is not positive, we show that reductional equality collapses: ↔
identifies terms which bear absolutely no relationship with each other.

Lemma 13. Assume, there are a, b ∈ R• such that a+ b = 0, then for all term
σ, 0 →̃∗

aσ →̃∗
0.

Proof. Take Y a fixed point combinator of λ-calculus, such that (Y ) s →∗

β

(s) (Y ) s for all λ-term s. Write Υσ for (Y )λx (σ + x); then Υσ →̃∗
σ + Υσ.

We get:
0

▽

= aΥσ + bΥσ →̃∗ aσ + aΥσ + bΥσ
▽

= aσ

and
aσ

▽

= aσ + aΥσ + bΥσ →̃∗
aσ + aΥσ + bσ + bΥσ

▽

= 0.

Corollary 3. If R is such that 1 has an opposite, i.e. −1 ∈ R with 1+(−1) = 0,
then for all terms σ and τ , σ →̃∗

τ .
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4 On normalization

Unsurprisingly, if R is not positive, there is no normal term: assume there are
a, b ∈ R such that a+ b = 0 and a 6= 0 and let s ∈ AR and S′ ∈ CR be such that
s → S′; then for all σ ∈ R〈∆R〉, σ

▽

= as + bs + σ and then σ →̃ aS′ + bs + σ.
Hence every term σ reduces.

Moreover, positivity is not a sufficient condition for strong normalization to
hold: assume R is the set Q+ of non-negative rational numbers and let s ∈ AR

and S′ ∈ CR be such that s→ S′; then there is an infinite sequence of reductions
from s:

s
▽

=
1

2
s+

1

2
s →̃

1

2
s+

1

2
S′ →̃

1

4
s+

3

4
S′ →̃ . . . →̃

1

2n
s+

2n − 1

2n
S′ →̃ . . .

whether s is typable or not.
In [ER03], it is proved that if R is the set N of all natural numbers, then sim-

ply typed terms are strongly normalizing. The associated type system is defined
on canonical terms, by adding to usual typing rules for variable, abstraction and
application, the following rules for linear combinations:

Γ ⊢ 0 : A
Γ ⊢ σ : A
Γ ⊢ aσ : A

Γ ⊢ σ : A Γ ⊢ τ : A
Γ ⊢ σ + τ : A .

Then one extends typing to all terms: for all σ ∈ R〈∆R〉, write Γ ⊢ σ : A iff
Γ ⊢ can(σ) : A. The strong normalization proof is by an variation of Tait’s
reducibility method, using the following key lemma:

Lemma 14. The set of all strongly normalizing terms is the R-submodule of
R〈∆R〉 generated by simple strongly normalizing terms: i.e. σ is strongly normal-
izing iff, for all s ∈ Supp(σ), s is strongly normalizing.

which is easily established in the case R = N.
In [Vau06], the author showed that Lemma 14 can be generalized to any rig

R such that:

(i) R is finitely splitting in the sense that, for all a ∈ R, the following set is
finite

{(a1, . . . , an) ∈ (R•)
n

; n ∈ N and a = a1 + · · · + an} ;

(ii) the width function w : R −→ N defined by

w (a) = max {n ∈ N; ∃(a1, . . . , an) ∈ (R•)
n

s.t. a = a1 + · · · + an}

is a morphism of rigs: w (a+ b) = w (a) + w (b) and w (ab) = w (a)w (b).

Clearly, these conditions also imply R is positive.

Example 1. Setting R = N satisfies these conditions, with w (n) = n for all
n ∈ N. One more interesting instance is the rig of all polynomials over indeter-
minates ξ1, . . . , ξn with non-negative integer coefficients N[ξ1, . . . , ξn]: the width
of polynomial P is its value at point (1, . . . , 1), i.e. the sum of its coefficients.

13



The proof of strong normalization from [ER03] generalizes to this setting and
one obtains the following theorem:

Theorem 3. If R is finitely splitting and w is a morphism of rigs, then all
typable terms are strongly normalizing.

As a consequence of this theorem, one also derives the following corollary:

Corollary 4. If R is positive, then every typable term admits a normal form.

The algorithm behind Corollary 4 can be sketched as follows:

– replace scalars with formal indeterminates in the canonical form of a typable
term σ;

– the object τ thus obtained can be considered as a term with coefficients in
the free rig generated by indeterminates;

– this rig of polynomials enjoys (i) and (ii), hence Theorem 3 applies, since τ
is also typable;

– replace indeterminates by their values in the normal form of τ : this is the
normal form of σ.

A more thorough development on normalization, including a full proof of
Theorem 3 is provided in Appendix A.

5 Other approaches and future work

It is noteworthy that the collapse we described in section 3.3 involves a term of
the form Υσ −Υσ where Υσ does not normalize. More strikingly, Υσ →̃∗ nσ+Υσ,
for all n ∈ N: reduction of Υσ generates a potentially infinite amount of σ. This
is not a surprise, since untyped algebraic λ-calculus involves both linear algebra
and arbitrary fixed points. The term Υσ−Υσ is then analoguous to the well know
indeterminate form ∞−∞ of the affinely extended real line.

The collapse of equality by reduction in presence of negative scalars follows
from the fact that we consider 0

▽

= Υσ +(−1)Υσ. Also, we have seen that the way
we defined reduction is problematic w.r.t. normalization properties: even if R is
positive, typable terms needn’t be strongly normalizing. Here we briefly review
some possible fixes, each addressing one of these problems, or both.

Restricting reduction. One seemingly natural variant on reduction is the follow-
ing one. Rather than (4), extend reduction of simple terms to all terms by:

σ→̂σ′ iff σ
▽

= as+ T and σ′ ▽

= aS′ + T , with a 6= 0, T(s) = 0 and s→ S′. (6)

This amounts to restrict the contextuality of reduction to the canonical forms
of terms. This reduction, however, is not confluent as soon as R is not positive:
if a+ b = 0 with a 6= 0 and y ∈ V, then aΥy + b (λxx) Υy →̂∗

-reduces both to ay
and 0, and those two terms are →̂-normal forms.

Also, even assuming R is positive, we did not manage to prove confluence
of →̂: as we hinted in the introduction, the diamond property fails for the cor-
responding notion of parallel reduction. Nonetheless, →̂-should be well-behaved
as far as normalization is concerned: the trick involving rational coefficients is
no longer possible.
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Typing. The restriction we have just suggested diminishes the role of scalar
operations during reduction. Another possible fix to the collapse might involve
typing, in order to ward arbitrary fixed points off.

The main problem with that idea is that, unless the set of scalars is positive
(and we have seen that, in this case, reduction is conservative over usual β-
reduction), typing is not preserved by reduction. Hence, it should be better to
study the denotational semantics of ordinary typed λ-calculus in finiteness spaces
[Ehr05] more thoroughly, before investigating further in that direction.

Restricting equality. Last, we mention a completely different point of view on
linear combinations of terms, that ought to lead to interesting results. In [AD06],
Arrighi and Dowek introduce linear algebraic λ-calculus. The background setting
is quite unrelated: their work provides a framework for quantum computation; in
particular, terms represent linear operators, hence application is bilinear rather
than linear in the function only. Notwithstanding this distinction, their approach
to λ-calculus with linear combinations of terms contrasts with ours: consider
terms up to ≡ rather than some variant of

▽

=, and handle the identities between
linear combinations, together with analogues of (1) and (2), as reduction rules.

Confronted to problems similar to those we exposed above in presence of
negative coefficients, they opted for a completely different solution, far more
natural in their setting: restrict those reduction rules involving rewriting of linear
combinations to closed terms in normal form. This allows to tame some of the
intrinsic potential infinity of pure λ-calculus, avoiding to consider indeterminate
forms. Up to these restrictions, they prove confluence for the whole system.

Although this defines a reduction strategy, in contrast with usual β-reduction,
and they did not consider typing nor normalization properties, it should prove
quite enlightening to check that a similar system can be defined for algebraic
λ-calculus. In particular it will be interesting to find out whether the same
restrictions on reduction will ensure confluence.

A Typing and normalization in algebraic λ-calculus

We explicit the simple type system for algebraic λ-calculus, then give full proofs
of Lemma 14 and Theorem 3. Also, we present a weak normalization scheme in
case R is positive but not finitely splitting.

A.1 Simple type system

Algebraic λ-terms may be given implicative propositional types in a natural way.
Assume we have a denumerable set of basic types φ, ψ, . . .; we build types from
basic types using intuitionistic arrow: if A and B are types, then so is A⇒ B.

Typing rules are given in figure 1.

Proposition 8. Typing in algebraic λ-calculus enjoys the following properties:

(i) If Γ ⊢ σ : A then free variables of σ are declared in Γ .

15



Γ, x : A ⊢ x : A

Γ, x : A ⊢ σ : B

Γ ⊢ λx σ : A ⇒ B

Γ ⊢ σ : A ⇒ B Γ ⊢ τ : A

Γ ⊢ (σ) τ : B

Γ ⊢ 0 : A

Γ ⊢ σ : A

Γ ⊢ aσ : A

Γ ⊢ σ : A Γ ⊢ τ : A

Γ ⊢ σ + τ : A

Fig. 1. Typing rules for algebraic λ-calculus.

(ii) If Γ ⊢ σ : A then, for all Γ ′, Γ, Γ ′ ⊢ σ : A.

(iii) If σ ≡ σ′ then Γ ⊢ σ : A iff Γ ⊢ σ′ : A.
(iv) For all canonical term S, Γ ⊢ S : A if and only if, for all u ∈ Λ (S),

Γ ⊢ u : A.

Notice that typing is not preserved by
▽

=: for all term σ, if Γ ⊢ σ : A then
Γ ⊢ can(σ) : A, but the converse does not necessarily hold. Hence we weaken
typing judgements as follows:

Definition 16. We say term σ is weakly typable of type A in context Γ if Γ ⊢
can(σ) : A is derivable. We write Γ  σ : A for Γ ⊢ can(σ) : A.

Proposition 9. Weak typing enjoys the following properties:

(i) If σ
▽

= σ′ then Γ  σ : A iff Γ  σ′ : A.
(ii) For all term σ, Γ  σ : A if and only if, for all u ∈ Λ (σ), Γ ⊢ u : A.

Now we show that subject reduction holds, as soon as R is positive.

Lemma 15. Let σ, τ ∈ ΛR. If Γ, x : A ⊢ σ : B and Γ ⊢ τ : A then Γ ⊢ σ [τ/x] :
B.

Proof. The proof is straightforward by induction on the typing derivation of
Γ, x : A ⊢ σ : B.

Theorem 4. Assume R is positive. Subject reduction holds on canonical terms:
if S →̃ S′ and Γ ⊢ S : A then Γ ⊢ S′ : A.

Proof. One proves that property by induction on the typing derivation Γ ⊢ S : A.
Each induction step is proved by inspecting all possible cases for the reduction
S →̃ S′ using previous lemma and Proposition 4 in the case of a redex. The
positivity condition is used to handle the case in which S

▽

= at + U and S′ ▽

=
aT ′ +U with t→ T ′: by positivity, we necessarily have Γ ⊢ t : A and Γ ⊢ U : A.

Corollary 5. Assume R is positive. Subject reduction for weak typing holds: if
σ →̃ σ′ and Γ  σ : A then Γ  σ′ : A.
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A.2 Scalars and normalization

Recall that, if R is not positive, there is no normal term, and that positivity is
not even a sufficient condition for strong normalization to hold. In sections A.2
to A.5, we assume that R is finitely splitting in the following sense: for all a ∈ R,
the set

{(a1, . . . , an) ∈ (R•)
n

; n ∈ N and a = a1 + · · · + an}

is finite. Moreover, we assume that the width function w : R −→ N defined by

w (a) = max {n ∈ N; ∃(a1, . . . , an) ∈ (R•)
n

s.t. a = a1 + · · · + an}

is a morphism of rigs: w (a+ b) = w (a) + w (b) and w (ab) = w (a)w (b) (which
entails w (0) = 0 and w (1) = 1).

Proposition 10. For all a ∈ R, w (a) = 0 iff a = 0. Hence R is positive and
has no zero divisor.

Recall that the rig of all polynomials over indeterminates ξ1, . . . , ξn with
non-negative integer coefficients, denoted by Pn = N[ξ1, . . . , ξn], satisfies these
conditions, with w (P ) = P (1, . . . , 1), for all P ∈ Pn. It is the archetypal rig
the structure of which inspired the proof. Conversely, notice that any rig R with
a width morphism resembles a rig of polynomials with coefficients in N: call
“unitary monomials” those a ∈ R such that w (a) = 1.

Such a rig of polynomials is also involved in the weak normalization scheme
we develop in section A.6.

The R-module of strongly normalizing terms

Lemma 16. If σ
▽

= aτ + υ with a 6= 0 then Supp(τ) ⊆ Supp(σ).

Proof. This is just positivity of R together with the fact that R has no zero
divisor.

Lemma 17. If σ ∈ ∆R is a simple term, then for all σ′ ∈ R〈∆R〉, σ →̃ σ′ iff
σ → σ′.

Proof. This is a straightforward consequence of the previous lemma together
with the fact that w (1) = 1.

Definition 17. We define the height of a term as follows. First, on atomic and
canonical terms:

– h(x) = 1;
– h(λx s) = 1 + h(s);
– h((s)T ) = 1 + max(h(s), h(T ));
– h(

∑n

i=1 aisi) = max {h(si); i ∈ [1;n]} .

Then we generalize this definition to all terms: for all σ ∈ R〈∆R〉, h(σ) =
h(can(σ)).
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Lemma 18. Let σ ∈ R〈∆R〉. There are only finitely many terms σ′ (up to
▽

=)
such that σ →̃ σ′.

Proof. The proof is by induction on h(σ). If h(σ) = 0 then σ
▽

= 0 and the
property holds trivially by Lemma 16. Assume that property holds for all σ such
that h(σ) < k. Let σ ∈ R〈∆R〉 be such that h(σ) = k. For each term σ′ ∈ R〈∆R〉
such that σ →̃ σ′, there are t ∈ AR, T ′, U ∈ CR and a ∈ R• such that σ

▽

= at+U ,
σ′ ▽

= aT ′ + U and t → T ′. By Lemma 16, t ∈ Supp(σ): there are finitely many
such atomic terms. Moreover, due to the finite splitting condition on R, for each
such t there exist finitely many a ∈ R• and U ∈ CR such that σ

▽

= at + U .
A simple inspection of the definition of → shows that, by inductive hypothesis
applied to strict subterms of t (all of height strictly less than h(t) ≤ k), t →-
reduces to finitely many canonical terms, which are all the possible choices for
T ′.

Definition 18. We denote by N the set of strongly normalizing simple terms,
with equality

▽

=.

Then R〈N〉 is the set of linear combinations of strongly normalizing simple
terms:

R〈N〉 = {σ ∈ R〈∆R〉; Supp(σ) ⊆ N} .

Definition 19. If τ ∈ ∆R is a simple term, and σ ∈ R〈∆R〉 is any term, we
write wτ (σ) for the width of the coefficient of τ in σ: wτ (σ) = w

(
σ(τ)

)
.

By Lemma 18, König’s lemma allows for the following definition:

Definition 20. If σ is a strongly normalizing term, we denote by |σ| the length
of the longest sequence of →̃-reductions from σ to its normal form. If σ ∈ R〈N〉,
we define ‖σ‖ =

∑
τ∈Supp(σ) wτ (σ) |τ |.

Recall that we consider the elements of Supp(σ) up to
▽

=: for instance, if σ
is a strongly normalizing simple term, ‖σ‖ = |σ|. By definition, If σ

▽

= σ′ then
‖σ‖ = ‖σ′‖.

For all σ, σ′ such that σ →̃ σ′, aσ+ τ →̃ aσ′ + τ also holds as soon as a 6= 0:
this is a straightforward consequence of Proposition 10. Hence the following
proposition:

Proposition 11. The support of every strongly normalizing term σ is a finite
subset of N , i.e. σ ∈ R〈N〉.

Lemma 19. Let σ ∈ N and let σ′ be such that σ → σ′. Then ‖σ′‖ < |σ|.

Proof. We write

can(σ′) ≡
n∑

i=1

σ′

(ti)
ti.
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By Proposition 11, each ti ∈ N . We expand this sum as follows:

σ′ ▽

=

n∑

i=1

wti
(σ′)∑

j=1

a
(i)
j ti

where, for all i ∈ [1;n],
wti

(σ′)∑

j=1

a
(i)
j = σ′

(ti)

and, for all j, a
(i)
j 6= 0. For each i ∈ [1;n], one can find a reduction of length |ti|

from ti to its normal form and concatenating these reductions, we get a reduction
from σ′ of length ‖σ′‖. Hence ‖σ′‖ + 1 ≤ |σ|.

The following proposition follows from w being a morphism of rigs.

Proposition 12. For all terms σ and τ and all scalar a, one has ‖σ + τ‖ =
‖σ‖ + ‖τ‖ and ‖aσ‖ = w (a) ‖σ‖.

We are now able to prove the following reformulation of Lemma 14

Lemma 20. The set of all strongly normalizing terms is R〈N〉.

Proof. One inclusion is Proposition 11. It remains to prove that if σ ∈ R〈N〉
then σ is strongly normalizing. This is proved by induction on ‖σ‖.

– If ‖σ‖ = 0, then positivity of R implies that for all simple term τ ∈ Supp(σ),
wτ (σ) |τ | = 0: since R has no zero divisor, we have |τ | = 0. Hence, as soon as
σ can be written as+ T with a 6= 0, since Lemma 16 implies s ∈ Supp(σ), s
is normal and doesn’t give rise to a reduction from σ.

– Suppose the result holds for all τ ∈ R〈N〉 such that ‖τ‖ < ‖σ‖. It is sufficient
to prove that, for all σ′ such that σ →̃ σ′, σ′ is strongly normalizing. Such
a σ′ is given by a ∈ R•, u ∈ AR and T, U ′ ∈ CR such that σ

▽

= au + T ,
u → U ′ and σ′ ▽

= aU ′ + T . By Lemma 16 and since Supp(σ) ⊂ N , u ∈
N (so U ′ has to be strongly normalizing, which by Proposition 11 implies
U ′ ∈ R〈N〉) and T ∈ R〈N〉; hence σ′ ∈ R〈N〉. By Proposition 12, we have
‖σ′‖ = ‖aU ′ + T ‖ = w (a) ‖U ′‖+‖T ‖ and ‖σ‖ = ‖au+ T‖ = w (a) |u|+‖T ‖.
By Lemma 19, ‖U ′‖ < |u|. Hence ‖σ′‖ < ‖σ‖ and induction hypothesis
applies.

A.3 Saturated sets

Definition 21. A stack is a sequence (σ1, . . . , σn) of terms, which we denote by
σ1 . . . σn. If π = σ1 . . . σn is a stack and σ is a term, we write σ :: π for stack
σσ1 . . . σn. If θ = τ1 . . . τm is another stack, we write πθ for the concatenation
σ1 . . . σnτ1 . . . τm.

Let X ⊆ ∆R be a set of simple terms. A stack π = σ1 . . . σn is an X -stack if,
for all i ∈ [1;n], σi ∈ R〈X 〉.
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Notice that any term σ with σ ∈ R〈X 〉 can be considered as an X -stack of
length 1 so that definitions and results about stacks generally apply to terms.

Definition 22. We extend algebraic equality on stacks as follows: σ1 . . . σn
▽

=
τ1 . . . τp iff n = p and, for all i ∈ [1;n], σi

▽

= τi.

We generalize application with stacks in argument position: if π = σ1 . . . σn

is a stack and σ ∈ R〈∆R〉, then we set (σ)π = ((σ) σ1 . . .)σn so that, if σ is a
simple term and π is a stack, then (σ)π is also a simple term.

Definition 23. Let X be a set of simple terms. An X -redex is a simple term of
the following shape:

σ
▽

= (λx s)T

where s ∈ X and T ∈ R〈X 〉. We write Red (σ) for the term obtained by firing
this redex: Red (σ)

▽

= s [T/x].
We say set X is saturated if, for all N -redex σ and all N -stack π, (Red (σ))π ∈

R〈X 〉 implies (σ)π ∈ X .

Lemma 21. N is saturated.

Proof. We have to prove that, for all N -redex σ and all N -stack π, (Red (σ))π ∈
R〈N〉 implies (σ) π ∈ N . We write σ

▽

= (λx s)T0 and π
▽

= T1 . . . Tn, where s ∈ N
and, for all i ∈ [0;n], Ti ∈ R〈N〉. With these notations, we are led to prove that,
for all s ∈ N and all N -stack T0 . . . Tn, if

(s [T0/x])T1 . . . Tn ∈ R〈N〉, (7)

then
τ

▽

= (λx s)T0 . . . Tn ∈ N .

By Lemma 14, each Ti is strongly normalizing. We prove the result by induction
on |s| +

∑n

i=0 |Ti|. By Lemma 17, it is sufficient to show that for all τ ′ such
that τ → τ ′, τ ′ is strongly normalizing. The reduction τ → τ ′ can occur at the
following positions:

– at the root of the N -redex;
– inside s;
– inside one of the Ti’s.

Head reduction. In the first case, which is the only possible one if |s|+
∑n

i=0 |Ti| =

0, τ ′
▽

= (Red (σ)) π so hypothesis (7) applies directly.

Reduction in the function. Consider the case in which reduction occurs inside
s. So τ ′

▽

= (λxS′)T0 :: π with s → S′. Write S′ ≡
∑q

l=1 als
′

l and, for all l ∈

[1; q], define τ ′l
▽

= (λx s′l)T0 :: π so that τ ′
▽

=
∑q

l=1 alτ
′

l . It is then sufficient
to prove that, for all l ∈ [1; q], τ ′l ∈ N . For all l, |s′l| < |s| and induction
hypothesis applies to the data s′l, T0, . . . , Tm. Hence it is sufficient to show that
(s′l [T0/x]) π ∈ R〈N〉. By hypothesis (7), (Red (σ))π ∈ R〈N〉. But, since s→ S′,
Corollary 1 and Lemma 3 imply (Red (σ))π →̃∗

∑q

l=1 al (s
′

l [T0/x])π. Hence each
(s′l [T0/x]) π ∈ R〈N〉 (Lemma 16).
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Reduction in an argument. Consider the case in which reduction occurs inside
one Ti. So τ ′

▽

= (λx s)T0 . . . T
′

i . . . Tm with Ti →̃ T ′

i . Since |T ′

i | < |Ti|, induction
hypothesis applies to the data s, T0, . . . , T

′

i , . . . , Tm. It is sufficient to show that
(s [T0/x])T1 . . . T

′

i . . . Tm ∈ R〈N〉 — or something similar if i = 0. The end of
the proof is the same as before.

A.4 Reducibility

Definition 24. If X and Y are sets of simple terms, one defines X ⇒ Y ⊆ ∆R

by:

X ⇒ Y = {σ ∈ ∆R; for all τ ∈ R〈X 〉, (σ) τ ∈ Y} .

More generally, if P is a set of stacks, one defines P ⇒ Y ⊆ ∆R by:

P ⇒ Y = {σ ∈ ∆R; ∀π ∈ P , (σ) π ∈ Y} .

Proposition 13. If P ⊆ P ′ are sets of stacks and Y ′ ⊆ Y ⊆ ∆R then P ′ ⇒
Y ′ ⊆ P ⇒ Y.

Lemma 22. If S is a saturated set and P is a set of N -stacks, then P ⇒ S is
saturated.

Proof. We have to show the following: for all N -redex τ and all N -stack π,
if (Red (τ))π ∈ R〈P ⇒ S〉, then (τ)π ∈ P ⇒ S. By definition of P ⇒ S, it
amounts to prove that for all θ ∈ P , (τ) πθ ∈ S. But since π and θ are N -
stacks, πθ is an N -stack too; thus by saturation of S, it is sufficient to prove
that (Red (τ))πθ ∈ R〈S〉. By hypothesis, (Red (τ))π ∈ R〈P ⇒ S〉, which ends
the proof, using the definition of P ⇒ S and the fact that θ ∈ P .

Definition 25. We define the interpretation A∗ of type A by induction on A:

– φ∗ = N if φ is a basic type;
– (A⇒ B)∗ = A∗ ⇒ B∗.

Definition 26. Let N0 be the set of all simple terms σ of shape σ
▽

= (x) π, where
π is an N -stack.

Lemma 23. The following inclusions hold:

N0 ⊆ (N ⇒ N0) ⊆ (N0 ⇒ N ) ⊆ N .

Proof. Of course, N0 ⊆ N , hence the central inclusion, by Proposition 13. The
first inclusion holds by definition of N0. If τ ∈ N0 ⇒ N , let x be any variable,
x ∈ N0 and we have (τ) x ∈ N , which clearly implies τ ∈ N by contextuality of
→̃; hence the last inclusion.

Corollary 6. For all type A, N0 ⊆ A∗ ⊆ N .
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A.5 Adequation

Theorem 5. Let σ be a term and assume

x1 : A1, . . . , xm : Am  σ : A

is derivable. Let σ1 ∈ R〈A∗

1〉, . . . , σm ∈ R〈A∗

m〉. Then

τ
▽

= σ [σ1, . . . , σm/x1, . . . , xm] ∈ R〈A∗〉.

Proof. We prove the theorem by induction on type derivation

x1 : A1, . . . , xm : Am ⊢ can(σ) : A.

Variable. σ
▽

= xi for some i and A = Ai. Then τ
▽

= σi ∈ R〈A∗

i 〉 by hypothesis.

Application. σ
▽

= (s)T with x1 : A1, . . . , xm : Am ⊢ s : B ⇒ A and x1 :
A1, . . . , xm : Am ⊢ T : B. By inductive hypothesis,

s [σ1, . . . , σm/x1, . . . , xm] ∈ R〈(B ⇒ A)∗〉

and
T [σ1, . . . , σm/x1, . . . , xm] ∈ R〈B∗〉.

Hence τ ∈ R〈A∗〉 by definition of B∗ ⇒ A∗.

Abstraction. A = B ⇒ C and σ
▽

= λx s with

x1 : A1, . . . , xm : Am, x : B ⊢ s : C.

We assume x is distinct from every xi and does not occur free in any σi.
Then τ

▽

= λxS′ with

S′ ▽

= s [σ1, . . . , σm/x1, . . . , xm] .

We show that τ ∈ R〈(B ⇒ C)∗〉 using the definition of B∗ ⇒ C∗: let T ∈ R〈B∗〉,
we have to prove (λxS′)T ∈ R〈C∗〉. Since C∗ is saturated, it is sufficient to
show that S′ [T/x] ∈ R〈C∗〉. By Proposition 1,

S′ [T/x]
▽

= s [T, T1, . . . , Tm/x, x1, . . . , xm]

and we conclude by induction hypothesis applied to s.

Linear combinations. σ
▽

=
∑n

i=1 aisi and Γ ⊢ si : A for all i ∈ [1;n]. Then, by
induction hypothesis, each si [σ1, . . . , σm/x1, . . . , xm] ∈ R〈A∗〉 and we conclude
directly.

We get the following theorem as a corollary of theorem 5.

Theorem 6. All weakly typable term are strongly normalizing.

Proof. Let σ ∈ R〈∆R〉 be such that x1 : A1, . . . , xm : Am  σ : A is derivable. For
all i ∈ [1;n], since N0 ⊂ A∗

i , xi ∈ R〈A∗

i 〉. Hence σ
▽

= σ [x1, . . . , xm/x1, . . . , xm] ∈
R〈A∗〉 by Theorem 5 and we conclude by lemma 6.
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A.6 Weak normalization scheme

Remember that we forced strong conditions on R in the beginning of this section:
we assumed that the width function w : R −→ N could be defined and was a
homomorphism of rigs (which in particular entails positivity of R). One can
however get rid of this problem by slightly changing the notion of normal form
and still obtain a weak normalization result.

Definition 27. We define passive terms by the following statements:

– σ ∈ ∆R is a neutral term if σ
▽

= x ∈ V, or σ
▽

= (s)T , where s is a neutral
term and T is a passive term;

– σ ∈ ∆R is a simple passive term if σ is neutral, or σ
▽

= λx s where s is a
simple passive term;

– σ is a passive term if, for all s ∈ Supp(σ), s is a simple passive term.

Intuitively, passive terms are those terms σ such that can(σ) contains no redex.

Proposition 14. Any normal term is passive. Moreover, if R is positive then
passive terms are exactly normal terms.

A rig of polynomials. Let R be any rig and Ξ be a set of indeterminates in
bijection with R: to every a ∈ R we associate ξa ∈ Ξ such that ξa = ξb iff a = b,
and Ξ = {ξa; a ∈ R}.

Definition 28. Let P = N [Ξ] be the rig of polynomials with non-negative inte-
ger coefficients over indeterminates in Ξ. If P ∈ P, and f : R −→ R′ where R′

is any rig, we denote by
P{a 7→ f(a)}

the valuation of P at f , i.e. the scalar (in R′) obtained by replacing each ξa in
P by f(a), for all a ∈ R.

Definition 29. If P ∈ P, we denote by JP K the value of P in R:

JP K = P{a 7→ a} ∈ R.

Lemma 24. The width function is well-defined and is a morphism of rigs from
P to N.

Proof. The width function is exactly the sum of all coefficients:

w (P ) = P{a 7→ 1} ∈ N.

Corollary 7. All weakly typable terms in P〈∆P〉 are strongly normalizing.

We extend valuation to terms as follows.

Definition 30. Let σ ∈ ΛP: JσK ∈ ΛR is the term obtained by replacing every
coefficient P in σ by its value JP K.
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If σ, τ ∈ ΛP, then JσK ≡ JτK iff σ ≡ τ , and JσK
▽

= JτK as soon as σ
▽

= τ . In
general, however, JσK

▽

= JτK does not imply σ
▽

= τ .

Proposition 15. For all σ ∈ P〈∆P〉, if σ is a passive term, then JσK ∈ R〈∆R〉
is a passive term.

Lemma 25. For all σ, σ′ ∈ P〈∆P〉, if σ →̃ σ′, then JσK →̃∗
JσK

′
.

Proof. The proof is easy by induction on reduction σ →̃ σ′.

Definition 31. Let σ ∈ R〈∆R〉. We define σ̌ ∈ P〈∆P〉 as the term obtained
from can(σ) by replacing every coefficient a by the monomial χa, so that σ

▽

=
can(σ) ≡ Jσ̌K.

Lemma 26. Let σ ∈ R〈∆R〉. If Γ  σ : A then Γ ⊢ σ̌ : A.

Proof. One easily proves by induction on canonical term S that that if Γ ⊢ S : A
then Γ ⊢ Š : A.

Theorem 7. Let σ ∈ R〈∆R〉 be a weakly typable term. Then σ is weakly nor-
malizing in the sense that it reduces to a passive form.

Proof. If σ is weakly typable then, by lemma 26, σ̌ is typable. By Theorem 3, σ̌
is strongly normalizing, hence σ̌ →̃∗

τ where τ is normal. By Proposition 14, τ
is passive, and so is JτK by Proposition 15. By Lemma 25, σ →̃∗ JτK, hence the
conclusion.

Recall that if R is positive, then every passive form is a normal form; in this
case Theorem 7 states a genuine weak normalization property.
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