Stability of limit cycles in a pluripotent stem cell dynamics model - Archive ouverte HAL Access content directly
Journal Articles Chaos, Solitons & Fractals Year : 2006

Stability of limit cycles in a pluripotent stem cell dynamics model

Abstract

This paper is devoted to the study of the stability of limit cycles of a nonlinear delay differential equation with a distributed delay. The equation arises from a model of population dynamics describing the evolution of a pluripotent stem cells population. We study the local asymptotic stability of the unique nontrivial equilibrium of the delay equation and we show that its stability can be lost through a Hopf bifurcation. We then investigate the stability of the limit cycles yielded by the bifurcation using the normal form theory and the center manifold theorem. We illustrate our results with some numerics.
Fichier principal
Vignette du fichier
Limit-cycles.pdf (412.52 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00376002 , version 1 (16-04-2009)

Identifiers

Cite

Mostafa Adimy, Fabien Crauste, Andrei Halanay, Mihaela Neamtu, Dumitru Opris. Stability of limit cycles in a pluripotent stem cell dynamics model. Chaos, Solitons & Fractals, 2006, 27 (4), pp.1091-1107. ⟨10.1016/j.chaos.2005.04.083⟩. ⟨hal-00376002⟩
144 View
181 Download

Altmetric

Share

Gmail Facebook X LinkedIn More