Large time behavior of solutions of viscous Hamilton-Jacobi Equations with superquadratic Hamiltonian - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Large time behavior of solutions of viscous Hamilton-Jacobi Equations with superquadratic Hamiltonian

Résumé

We study the long-time behavior of the unique viscosity solution $u$ of the viscous Hamilton-Jacobi Equation $u_t-\Delta u + |Du|^m = f\hbox{ in }\Omega\times (0,+\infty)$ with inhomogeneous Dirichlet boundary conditions, where $\Omega$ is a bounded domain of $\mathbb{R}^N$. We mainly focus on the superquadratic case ($m>2$) and consider the Dirichlet conditions in the generalized viscosity sense. Under rather natural assumptions on $f,$ the initial and boundary data, we connect the problem studied to its associated stationary generalized Dirichlet problem on one hand and to a stationary problem with a state constraint boundary condition on the other hand.
Fichier principal
Vignette du fichier
CASQ.pdf (349.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00371068 , version 1 (26-03-2009)

Identifiants

Citer

Thierry Wilfried Tabet Tchamba. Large time behavior of solutions of viscous Hamilton-Jacobi Equations with superquadratic Hamiltonian. 2009. ⟨hal-00371068⟩
113 Consultations
199 Téléchargements

Altmetric

Partager

More