The integral homology of $PSL_2$ of imaginary quadratic integers with non-trivial class group - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

The integral homology of $PSL_2$ of imaginary quadratic integers with non-trivial class group

Résumé

We show that a cellular complex described by Floege allows to determine the integral homology of the Bianchi groups $PSL_2(O_{-m})$, where $O_{-m}$ is the ring of integers of an imaginary quadratic number field $\rationals[\sqrt{-m}]$ for a square-free natural number $m$. We use this to compute in the cases m = 5, 6, 10, 13 and 15 with non-trivial class group the integral homology of $PSL_2(O_{-m})$, which before was known only in the cases m = 1, 2, 3, 7 and 11 with trivial class group.
Fichier principal
Vignette du fichier
Rahm_and_Fuchs.pdf (389.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00370722 , version 1 (26-03-2009)
hal-00370722 , version 2 (30-05-2009)
hal-00370722 , version 3 (04-06-2009)
hal-00370722 , version 4 (07-06-2009)
hal-00370722 , version 5 (17-06-2009)
hal-00370722 , version 6 (18-06-2009)
hal-00370722 , version 7 (06-10-2009)
hal-00370722 , version 8 (14-10-2009)
hal-00370722 , version 9 (06-09-2010)
hal-00370722 , version 10 (07-09-2010)
hal-00370722 , version 11 (09-09-2010)
hal-00370722 , version 12 (13-09-2010)

Identifiants

Citer

Alexander Rahm, Mathias Fuchs. The integral homology of $PSL_2$ of imaginary quadratic integers with non-trivial class group. 2009. ⟨hal-00370722v8⟩
284 Consultations
329 Téléchargements

Altmetric

Partager

More