The local time of a random walk on growing hypercubes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

The local time of a random walk on growing hypercubes

Résumé

We study a random walk in a random environment (RWRE) on $\Z^d$, $1 \leq d < +\infty$. The main assumptions are that conditionned on the environment the random walk is reversible. Moreover we construct our environment in such a way that the walk can't be trapped on a single point like in some particular RWRE but in some specific d-1 surfaces. These surfaces are basic surfaces with deterministic geometry. We prove that the local time in the neighborhood of these surfaces is driven by a function of the (random) reversible measure. As an application we get the limit law of the local time as a process on these surfaces.
Fichier principal
Vignette du fichier
article.pdf (270.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00368275 , version 1 (15-03-2009)

Identifiants

Citer

Pierre Andreoletti. The local time of a random walk on growing hypercubes. 2009. ⟨hal-00368275⟩
111 Consultations
62 Téléchargements

Altmetric

Partager

More