The local time of a random walk on growing hypercubes
Résumé
We study a random walk in a random environment (RWRE) on $\Z^d$, $1 \leq d < +\infty$. The main assumptions are that conditionned on the environment the random walk is reversible. Moreover we construct our environment in such a way that the walk can't be trapped on a single point like in some particular RWRE but in some specific d-1 surfaces. These surfaces are basic surfaces with deterministic geometry. We prove that the local time in the neighborhood of these surfaces is driven by a function of the (random) reversible measure. As an application we get the limit law of the local time as a process on these surfaces.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...