Optimal molecular alignment and orientation through rotational ladder climbing
Résumé
We study the control by electromagnetic fields of molecular alignment and orientation in a linear, rigid-rotor model. With the help of a monotonically convergent algorithm, we find that the optimal field is in the microwave part of the spectrum and acts by resonantly exciting the rotation of the molecule progressively from the ground state, i.e., by rotational ladder climbing. This mechanism is present not only when maximizing orientation or alignment, but also when using prescribed target states that simultaneously optimize the efficiency of orientation/alignment and its duration. The extension of the optimization method to consider a finite rotational temperature is also presented. ©2005 American Institute of Physics