Learning rules from multisource data for cardiac monitoring - Archive ouverte HAL
Article Dans Une Revue International Journal of Biomedical Engineering and Technology (IJBET) Année : 2010

Learning rules from multisource data for cardiac monitoring

Élisa Fromont
René Quiniou

Résumé

This paper formalises the concept of learning symbolic rules from multisource data in a cardiac monitoring context. Our sources, electrocardiograms and arterial blood pressure measures, describe cardiac behaviours from different viewpoints. To learn interpretable rules, we use an Inductive Logic Programming (ILP) method. We develop an original strategy to cope with the dimensionality issues caused by using this ILP technique on a rich multisource language. The results show that our method greatly improves the feasibility and the efficiency of the process while staying accurate. They also confirm the benefits of using multiple sources to improve the diagnosis of cardiac arrhythmias.
Fichier principal
Vignette du fichier
IJBET.pdf (501.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00362831 , version 1 (19-02-2009)

Identifiants

Citer

Élisa Fromont, René Quiniou, Marie-Odile Cordier. Learning rules from multisource data for cardiac monitoring. International Journal of Biomedical Engineering and Technology (IJBET), 2010, Lecture Notes in Computer Science, Vol 3 (1/2), pp.133-155. ⟨10.1007/11527770_65⟩. ⟨hal-00362831⟩
323 Consultations
327 Téléchargements

Altmetric

Partager

More