Risk Bounds for CART Classifiers under a Margin Condition - Archive ouverte HAL
Article Dans Une Revue Pattern Recognition Année : 2012

Risk Bounds for CART Classifiers under a Margin Condition

Servane Gey
  • Fonction : Auteur
  • PersonId : 854165

Résumé

Risk bounds for Classification and Regression Trees (CART, Breiman et. al. 1984) classifiers are obtained under a margin condition in the binary supervised classification framework. These risk bounds are obtained conditionally on the construction of the maximal deep binary tree and permit to prove that the linear penalty used in the CART pruning algorithm is valid under a margin condition. It is also shown that, conditionally on the construction of the maximal tree, the final selection by test sample does not alter dramatically the estimation accuracy of the Bayes classifier. In the two-class classification framework, the risk bounds that are proved, obtained by using penalized model selection, validate the CART algorithm which is used in many data mining applications such as Biology, Medicine or Image Coding.
Fichier principal
Vignette du fichier
MarginCART_full.pdf (394.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00362281 , version 1 (17-02-2009)
hal-00362281 , version 2 (18-02-2009)
hal-00362281 , version 3 (12-08-2009)
hal-00362281 , version 4 (02-07-2010)
hal-00362281 , version 5 (01-03-2012)

Identifiants

Citer

Servane Gey. Risk Bounds for CART Classifiers under a Margin Condition. Pattern Recognition, 2012, 45, pp.3523-3534. ⟨10.1016/j.patcog.2012.02.021⟩. ⟨hal-00362281v5⟩
185 Consultations
343 Téléchargements

Altmetric

Partager

More