Multiphase weakly nonlinear geometric optics for Schrodinger equations - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2010

Multiphase weakly nonlinear geometric optics for Schrodinger equations

Résumé

We describe and rigorously justify the nonlinear interaction of highly oscillatory waves in nonlinear Schrodinger equations, posed on Euclidean space or on the torus. Our scaling corresponds to a weakly nonlinear regime where the nonlinearity affects the leading order amplitude of the solution, but does not alter the rapid oscillations. We consider initial states which are superpositions of slowly modulated plane waves, and use the framework of Wiener algebras. A detailed analysis of the corresponding nonlinear wave mixing phenomena is given, including a geometric interpretation on the resonance structure for cubic nonlinearities. As an application, we recover and extend some instability results for the nonlinear Schrodinger equation on the torus in negative order Sobolev spaces.
Fichier principal
Vignette du fichier
wnlgo10.pdf (362.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00361348 , version 1 (13-02-2009)
hal-00361348 , version 2 (16-02-2009)

Identifiants

Citer

Rémi Carles, Eric Dumas, Christof Sparber. Multiphase weakly nonlinear geometric optics for Schrodinger equations. SIAM Journal on Mathematical Analysis, 2010, 42 (1), pp.489-518. ⟨10.1137/090750871⟩. ⟨hal-00361348v2⟩
456 Consultations
351 Téléchargements

Altmetric

Partager

More