Surface projective convexe de volume fini - Archive ouverte HAL Access content directly
Journal Articles Annales de l'Institut Fourier Year : 2012

Surface projective convexe de volume fini

Abstract

A convex projective surface is the quotient of a properly convex open $\O$ of $\P$ by a discret subgroup $\G$ of $\s$. We give some caracterisations of the fact that a convex projective surface is of finite volume for the Busemann's measure. We deduce of this that if $\O$ is not a triangle then $\O$ is strictly convex, with $\Cc^1$ boundary and that a convex projective surface $S$ is of finite volume if and only if the dual surface is of finite volume.
Fichier principal
Vignette du fichier
SurfaceProjectiveConvexeDeVolumeFini.pdf (661.21 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00361030 , version 1 (12-02-2009)
hal-00361030 , version 2 (28-06-2010)

Identifiers

Cite

Ludovic Marquis. Surface projective convexe de volume fini. Annales de l'Institut Fourier, 2012, 62 (1), p. 325-392. ⟨10.5802/aif.2707⟩. ⟨hal-00361030v2⟩
84 View
223 Download

Altmetric

Share

Gmail Facebook X LinkedIn More