Représentations linéaires des graphes finis - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2009

Représentations linéaires des graphes finis

Abstract

Let X be a non-empty finite set and alpha a symmetric bilinear form on a real finite dimensional vector space E. We say that a set GG={U_i | i in X } of linear lines in E is an isometric sheaf, if there exist generators u_i of the lines U_i, and real constants ''omega'' and ''c '' such that : forall i,j in X, alpha(u_i,u_i)=omega, and if i is different from j, then alpha(u_i,u_j)=epsilon_{i,j}.c, with epsilon_i,j in {-1,+1} Let Gamma be the graph whose set of vertices is X, two of them, say i and j, being linked when epsilon_{i,j} = - 1. In this article we explore the relationship between GG and Gamma ; we describe all sheaves associated with a given graph Gamma and construct the group of isometries stabilizing one of those as an extension group of Aut(Gamma). We finally illustrate our construction with some examples.
Fichier principal
Vignette du fichier
graphes-groupes-ps.pdf (203.27 Ko) Télécharger le fichier
elsart.cls (54.07 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Other

Dates and versions

hal-00360279 , version 1 (11-02-2009)

Identifiers

Cite

Lucas Vienne. Représentations linéaires des graphes finis. 2009. ⟨hal-00360279⟩
111 View
89 Download

Altmetric

Share

Gmail Facebook X LinkedIn More