Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Fourier Année : 2006

Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces

Résumé

This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.
Fichier non déposé

Dates et versions

hal-00359328 , version 1 (06-02-2009)

Identifiants

  • HAL Id : hal-00359328 , version 1

Citer

Jean-Marc Delort, Jérémie Szeftel. Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces. Annales de l'Institut Fourier, 2006, 56, pp.1419-1456. ⟨hal-00359328⟩
116 Consultations
0 Téléchargements

Partager

More