Discretizing the fractional Levy area - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2010

Discretizing the fractional Levy area

Résumé

In this article, we give sharp bounds for the Euler- and trapezoidal discretization of the Levy area associated to a d-dimensional fractional Brownian motion. We show that there are three different regimes for the exact root mean-square convergence rate of the Euler scheme. For H<3/4 the exact convergence rate is n^{-2H+1/2}, where n denotes the number of the discretization subintervals, while for H=3/4 it is n^{-1} (log(n))^{1/2} and for H>3/4 the exact rate is n^{-1}. Moreover, the trapezoidal scheme has exact convergence rate n^{-2H+1/2} for H>1/2. Finally, we also derive the asymptotic error distribution of the Euler scheme. For H lesser than 3/4 one obtains a Gaussian limit, while for H>3/4 the limit distribution is of Rosenblatt type.
Fichier principal
Vignette du fichier
fla-euler12.pdf (325.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00358325 , version 1 (03-02-2009)

Identifiants

Citer

Andreas Neuenkirch, Samy Tindel, Jérémie Unterberger. Discretizing the fractional Levy area. Stochastic Processes and their Applications, 2010, 120, pp.223-254. ⟨10.1016/j.spa.2009.10.007⟩. ⟨hal-00358325⟩
180 Consultations
201 Téléchargements

Altmetric

Partager

More