Nonparametric estimation for pure jump Lévy processes based on high frequency data. - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2009

Nonparametric estimation for pure jump Lévy processes based on high frequency data.

Fabienne Comte
Valentine Genon-Catalot
  • Fonction : Auteur
  • PersonId : 836340

Résumé

In this paper, we study nonparametric estimation of the Lévy density for pure jump Lévy processes. We consider $n$ discrete time observations with step $\Delta$. The asymptotic framework is: $n$ tends to infinity, $\Delta=\Delta_n$ tends to zero while $n\Delta_n$ tends to infinity. First, we use a Fourier approach (``frequency domain"): this allows to construct an adaptive nonparametric estimator and to provide a bound for the global ${\mathbb L}^2$-risk. Second, we use a direct approach (``time domain") which allows to construct an estimator on a given compact interval. We provide a bound for ${\mathbb L}^2$-risk restricted to the compact interval. We discuss rates of convergence and give examples and simulation results for processes fitting in our framework.
Fichier principal
Vignette du fichier
LevyHFComteGenon.pdf (1.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00358184 , version 1 (03-02-2009)

Identifiants

Citer

Fabienne Comte, Valentine Genon-Catalot. Nonparametric estimation for pure jump Lévy processes based on high frequency data.. Stochastic Processes and their Applications, 2009, 119 (12), pp.4088-4123. ⟨10.1016/j.spa.2009.09.013⟩. ⟨hal-00358184⟩
232 Consultations
169 Téléchargements

Altmetric

Partager

More