Fast solving of Weighted Pairing Least-Squares systems - Archive ouverte HAL
Article Dans Une Revue Journal of Computational and Applied Mathematics Année : 2009

Fast solving of Weighted Pairing Least-Squares systems

Pierre Courrieu

Résumé

This paper presents a generalization of the "weighted least-squares" (WLS), named "weighted pairing least-squares" (WPLS), which uses a rectangular weight matrix and is suitable for data alignment problems. Two fast solving methods, suitable for solving full rank systems as well as rank deficient systems, are studied. Computational experiments clearly show that the best method, in terms of speed, accuracy, and numerical stability, is based on a special {1, 2, 3}-inverse, whose computation reduces to a very simple generalization of the usual "Cholesky factorization-backward substitution" method for solving linear systems.
Fichier principal
Vignette du fichier
WPLS.pdf (105.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00358125 , version 1 (02-02-2009)
hal-00358125 , version 2 (29-05-2009)

Identifiants

Citer

Pierre Courrieu. Fast solving of Weighted Pairing Least-Squares systems. Journal of Computational and Applied Mathematics, 2009, in press. ⟨hal-00358125v1⟩
63 Consultations
712 Téléchargements

Altmetric

Partager

More