Highly Undecidable Problems For Infinite Computations - Archive ouverte HAL
Article Dans Une Revue RAIRO - Theoretical Informatics and Applications (RAIRO: ITA) Année : 2009

Highly Undecidable Problems For Infinite Computations

Résumé

We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are $\Pi_2^1$-complete, hence located at the second level of the analytical hierarchy, and ``highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all $\Pi_2^1$-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.
Fichier principal
Vignette du fichier
INF-COMP-ITA.pdf (277.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00349761 , version 1 (04-01-2009)

Identifiants

Citer

Olivier Finkel. Highly Undecidable Problems For Infinite Computations. RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), 2009, 43 (2), pp.339-364. ⟨hal-00349761⟩
155 Consultations
364 Téléchargements

Altmetric

Partager

More