On the total order of reducibility of a pencil of algebraic plane curves - Archive ouverte HAL
Article Dans Une Revue Journal of Algebra Année : 2011

On the total order of reducibility of a pencil of algebraic plane curves

Laurent Busé

Résumé

In this paper, the problem of bounding the number of reducible curves in a pencil of algebraic plane curves is addressed. Unlike most of the previous related works, each reducible curve of the pencil is here counted with its appropriate multiplicity. It is proved that this number of reducible curves, counted with multiplicity, is bounded by d^2-1 where d is the degree of the pencil. Then, a sharper bound is given by taking into account the Newton's polygon of the pencil.
Fichier principal
Vignette du fichier
HomRupFinal.pdf (242.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00348561 , version 1 (19-12-2008)
hal-00348561 , version 2 (17-08-2011)

Identifiants

Citer

Laurent Busé, Guillaume Chèze. On the total order of reducibility of a pencil of algebraic plane curves. Journal of Algebra, 2011, 341 (1), pp.256-278. ⟨10.1016/j.jalgebra.2011.06.006⟩. ⟨hal-00348561v2⟩
534 Consultations
238 Téléchargements

Altmetric

Partager

More