Inverse zero-sum problems in finite Abelian p-groups - Archive ouverte HAL
Article Dans Une Revue Colloquium Mathematicum Année : 2010

Inverse zero-sum problems in finite Abelian p-groups

Benjamin Girard

Résumé

In this paper, we study the minimal number of elements of maximal order within a zero-sumfree sequence in a finite Abelian p-group. For this purpose, in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, the method that we use here enables us to show that, if we denote by exp(G) the exponent of the finite Abelian p-group G which is considered, then a zero-sumfree sequence S with maximal possible length in G must contain at least exp(G)-1 elements of maximal order, which improves a previous result of W. Gao and A. Geroldinger.
Fichier principal
Vignette du fichier
InversezerosumproblemsII.pdf (194.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00345786 , version 1 (10-12-2008)

Identifiants

Citer

Benjamin Girard. Inverse zero-sum problems in finite Abelian p-groups. Colloquium Mathematicum, 2010, 120, pp.7-21. ⟨10.4064/cm120-1-2⟩. ⟨hal-00345786⟩
189 Consultations
109 Téléchargements

Altmetric

Partager

More