On the connection between two quasilinear elliptic problems with source terms of order 0 or 1 - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

On the connection between two quasilinear elliptic problems with source terms of order 0 or 1

Résumé

We establish a precise connection between two elliptic quasilinear problems with Dirichlet data in a bounded domain of $\mathbb{R}^{N}.$ The first one, of the form \[ -\Delta_{p}u=\beta(u)\left\vert \nabla u\right\vert ^{p}+\lambda f(x)+\alpha, \] involves a source gradient term with natural growth, where $\beta$ is nonnegative, $\lambda>0,f(x)\geqq0$, and $\alpha$ is a nonnegative measure. The second one, of the form \[ -\Delta_{p}v=\lambda f(x)(1+g(v))^{p-1}+\mu, \] presents a source term of order $0,~$where $g$ is nondecreasing, and $\mu$ is a nonnegative measure. Here $\beta$ and $g$ can present an asymptote. The correlation gives new results of existence, nonexistence, regularity and multiplicity of the solutions for the two problems, without or with measures. New informations on the extremal solutions are given when $g$ is superlinear.
Fichier principal
Vignette du fichier
Haydar18nov08.pdf (602.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00339823 , version 1 (19-11-2008)

Identifiants

Citer

Haydar Abdel Hamid, Marie-Françoise Bidaut-Véron. On the connection between two quasilinear elliptic problems with source terms of order 0 or 1. 2008. ⟨hal-00339823⟩
133 Consultations
103 Téléchargements

Altmetric

Partager

More