Intersection number of paths lying on a digital surface and a new jordan theorem - Archive ouverte HAL
Communication Dans Un Congrès Lecture Notes in Computer Science Année : 1999

Intersection number of paths lying on a digital surface and a new jordan theorem

Résumé

The purpose of this paper is to define the notion of "real" intersection between paths drawn on the 3d digital boundary of a connected object. We consider two kinds of paths for different adjacencies, and define the algebraic number of oriented intersections between these two paths. We show that this intersection number is invariant under any homotopic transformation we apply on the two paths. Already, this intersection number allows us to prove a Jordan curve theorem for some surfels curves which lie on a digital surface, and appears as a good tool for proving theorems in digital topology about surfaces.
Fichier principal
Vignette du fichier
FoureyMalgouyres99.pdf (179.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00338940 , version 1 (06-06-2013)

Identifiants

Citer

Sébastien Fourey, Rémy Malgouyres. Intersection number of paths lying on a digital surface and a new jordan theorem. Proceedings of the 8th International Conference Discrete Geometry for Computer Imagery (DGCI'99), Mar 1999, Marne la Vallée, France. pp.104-117, ⟨10.1007/3-540-49126-0_9⟩. ⟨hal-00338940⟩
188 Consultations
99 Téléchargements

Altmetric

Partager

More