Bayesian Models for Multimodal Perception of 3D Structure and Motion - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Bayesian Models for Multimodal Perception of 3D Structure and Motion

Résumé

In this text we will formalise a novel solution, the Bayesian Volumetric Map (BVM), as a framework for a metric, short-term, egocentric spatial memory for multimodal perception of 3D structure and motion. This solution will enable the implementation of top-down mechanisms of attention guidance of perception towards areas of high entropy/uncertainty, so as to promote active exploration of the environment by the robotic perceptual system. In the process, we will to try address the inherent challenges of visual, auditory and vestibular sensor fusion through the BVM. In fact, it is our belief that perceptual systems are unable to yield truly useful descriptions of their environment without resorting to a temporal series of sensory fusion processed on a short-term memory such as the BVM.

Domaines

Informatique
Fichier principal
Vignette du fichier
FinalPaperMultimodalCogSys2008.pdf (763.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00338800 , version 1 (14-11-2008)

Identifiants

  • HAL Id : hal-00338800 , version 1

Citer

J.F. Ferreira, Pierre Bessière, Kamel Mekhnacha, J. Lobo, J. Dias, et al.. Bayesian Models for Multimodal Perception of 3D Structure and Motion. International Conference on Cognitive Systems (CogSys 2008), 2008, Karlsruhe, Germany. ⟨hal-00338800⟩
385 Consultations
323 Téléchargements

Partager

More