Topological Graph Polynomials and Quantum Field Theory, Part I: Heat Kernel Theories - Archive ouverte HAL
Article Dans Une Revue Journal of Noncommutative Geometry Année : 2010

Topological Graph Polynomials and Quantum Field Theory, Part I: Heat Kernel Theories

Résumé

We investigate the relationship between the universal topological polynomials for graphs in mathematics and the parametric representation of Feynman amplitudes in quantum field theory. In this first paper we consider translation invariant theories with the usual heat-kernel-based propagator. We show how the Symanzik polynomials of quantum field theory are particular multivariate versions of the Tutte polynomial, and how the new polynomials of noncommutative quantum field theory are particular versions of the Bollobás-Riordan polynomials.

Dates et versions

hal-00337725 , version 1 (07-11-2008)

Identifiants

Citer

Thomas Krajewski, V. Rivasseau, A. Tanasa, Zhituo Wang. Topological Graph Polynomials and Quantum Field Theory, Part I: Heat Kernel Theories. Journal of Noncommutative Geometry, 2010, 4, pp.29-82. ⟨10.4171/JNCG/49⟩. ⟨hal-00337725⟩
661 Consultations
0 Téléchargements

Altmetric

Partager

More