Hypocoercivity for kinetic equations with linear relaxation terms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Hypocoercivity for kinetic equations with linear relaxation terms

Résumé

This note is devoted to a simple method for proving hypocoercivity of the solutions of a kinetic equation involving a linear time relaxation operator, i.e. the construction of an adapted Lyapunov functional satisfying a Gronwall-type inequality. The method clearly distinguishes the coercivity at microscopic level, which directly arises from the properties of the relaxation operator, and a spectral gap inequality at the macroscopic level for the spatial density, which is connected to the diffusion limit. It improves on previously known results. Our approach is illustrated by the linear BGK model and a relaxation operator which corresponds at macroscopic level to the linearized fast diffusion.
Fichier principal
Vignette du fichier
DMS-0-7.pdf (175.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00331947 , version 1 (20-10-2008)
hal-00331947 , version 2 (10-02-2009)

Identifiants

Citer

Jean Dolbeault, Clément Mouhot, Christian Schmeiser. Hypocoercivity for kinetic equations with linear relaxation terms. 2008. ⟨hal-00331947v1⟩
233 Consultations
256 Téléchargements

Altmetric

Partager

More