Mixing processes and exchanges in the tropical and the subtropical UT/LS
Résumé
Both in situ measurements and satellite observations indicate evidence of mixing in the upper troposphere (UT) and the lower-stratosphere (LS). In this study, the measurements performed during the Pre-AVE and Costa-Rica AVE campaigns are analysed with diffusive back-trajectories to assess mixing properties in the tropical and the subtropical UT/LS. A description of cross-tropopause pathways and mixing time scales is provided.
In the subtropics, Troposphere-Stratosphere mixing processes are found to differ in the vicinity of the tropopause and at higher altitudes. Below 350 K, the mixing line observed during Pre-AVE is shown to result from fast and local cross-tropopause irreversible exchange, involving two initially distant air masses with distinct chemical compositions. For measurements located above 350 K, mixing of the tropospheric air in the subtropical stratosphere occurs over a period of a month, the origins of the tropospheric source being localised in the tropical UT and the tropical boundary layer.
In the tropics, quantitative reconstructions of CO and O3 profiles above 360 K are obtained for one month back-trajectories calculations, pointing out that long term mixing is essential to determine the chemical composition in the tropical ascent. In particular, the existence of two-way meridional irreversible exchanges between 360 and 450 K is found to export tropical air in the subtropical stratosphere and to entrain old stratospheric air in the tropical ascent. Calculations of the Lagrangian mean age of air is shown to be in qualitative agreement with the CO2 observations and diabatic calculations.
In the subtropics, Troposphere-Stratosphere mixing processes are found to differ in the vicinity of the tropopause and at higher altitudes. Below 350 K, the mixing line observed during Pre-AVE is shown to result from fast and local cross-tropopause irreversible exchange, involving two initially distant air masses with distinct chemical compositions. For measurements located above 350 K, mixing of the tropospheric air in the subtropical stratosphere occurs over a period of a month, the origins of the tropospheric source being localised in the tropical UT and the tropical boundary layer.
In the tropics, quantitative reconstructions of CO and O3 profiles above 360 K are obtained for one month back-trajectories calculations, pointing out that long term mixing is essential to determine the chemical composition in the tropical ascent. In particular, the existence of two-way meridional irreversible exchanges between 360 and 450 K is found to export tropical air in the subtropical stratosphere and to entrain old stratospheric air in the tropical ascent. Calculations of the Lagrangian mean age of air is shown to be in qualitative agreement with the CO2 observations and diabatic calculations.
Domaines
Océan, AtmosphèreOrigine | Accord explicite pour ce dépôt |
---|
Loading...