Uniqueness results for convex Hamilton-Jacobi equations under $p>1$ growth conditions on data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Uniqueness results for convex Hamilton-Jacobi equations under $p>1$ growth conditions on data

Résumé

Unbounded stochastic control problems may lead to Hamilton-Jacobi-Bellman equations whose Hamiltonians are not always defined, especially when the diffusion term is unbounded with respect to the control. We obtain existence and uniqueness of viscosity solutions growing at most like $o(1+|x|^p)$ at infinity for such HJB equations and more generally for degenerate parabolic equations with a superlinear convex gradient nonlinearity. If the corresponding control problem has a bounded diffusion with respect to the control, then our results apply to a larger class of solutions, namely those growing like $O(1+|x|^p)$ at infinity. This latter case encompasses some equations related to backward stochastic differential equations.
Fichier principal
Vignette du fichier
dalioley-convexe.pdf (271.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00327496 , version 1 (08-10-2008)

Identifiants

Citer

Francesca da Lio, Olivier Ley. Uniqueness results for convex Hamilton-Jacobi equations under $p>1$ growth conditions on data. 2008. ⟨hal-00327496⟩
396 Consultations
201 Téléchargements

Altmetric

Partager

More