Model Selection for CART Regression Trees - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Information Theory Année : 2005

Model Selection for CART Regression Trees

Résumé

The performance of the Classification And Regression Trees (CART) pruning algorithm and the final discrete selection by test-sample as a functional estimation procedure are considered. The validation of the pruning procedure applied to Gaussian and bounded regression is of primary interest. On the one hand, the paper shows that the complexity penalty used in the pruning algorithm is valid in both cases and, on the other hand, that, conditionally to the construction of the maximal tree, the final selection does not alter dramatically the estimation accuracy of the regression function. In both cases the risk bounds that are proved, obtained by using the penalized model selection, validate the CART algorithm which is used in many applications such as Meteorology, Biology, Medicine, Pollution or Image Coding.
Fichier principal
Vignette du fichier
GeyNed04.pdf (259.31 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00326549 , version 1 (03-10-2008)

Identifiants

  • HAL Id : hal-00326549 , version 1

Citer

Servane Gey, Elodie Nédélec. Model Selection for CART Regression Trees. IEEE Transactions on Information Theory, 2005, 51 (2), pp.658 - 670. ⟨hal-00326549⟩
227 Consultations
1502 Téléchargements

Partager

More