Analyse asymptotique des processus autorégressifs de bifurcation par des méthodes de martingales.
Résumé
We study the least-square (LS) estimator of the unknown parameters of a bifurcating auto-regressive process (BAR). Under very weak assumptions on the noise sequence (namely conditional pair-wise independence and moments of order $4$), we derive a precise rate of convergence for the LS estimator, as well as a quadratic strong law and a central limit theorem. Our main tool is martingale theory. However, standard results do not apply directly, as the martingales involved here have a special form and an exponential growth rate.