Pacific cyclonic and anticyclonic transients in a global warming context: possible consequences for Western North American daily precipitation and temperature extremes - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Climate Dynamics Année : 2008

Pacific cyclonic and anticyclonic transients in a global warming context: possible consequences for Western North American daily precipitation and temperature extremes

Résumé

Trajectories of surface cyclones and anticyclones were constructed using an automated scheme by tracking local minima and maxima of mean daily sea level pressure data in the NCEP-NCAR reanalysis and the Centre National de Recherches Météorologiques coupled global climate Model (CNRM-CM3) SRES A2 integration. Mid-latitude lows and highs traveling in the North Pacific were tracked and daily frequencies were gridded. Transient activity in the CNRM-CM3 historical simulation (1950–1999) was validated against reanalysis. The GCM correctly reproduces winter trajectories as well as mean geographical distributions of cyclones and anticyclones over the North Pacific in spite of a general under-estimation of cyclones' frequency. On inter-annual time scales, frequencies of cyclones and anticyclones vary in accordance with the Aleutian Low (AL) strength. When the AL is stronger (weaker), cyclones are more (less) numerous over the central and eastern North Pacific, while anticyclones are significantly less (more) numerous over this region. The action of transient cyclones and anticyclones over the central and eastern North Pacific determines seasonal climate over the West Coast of North America, and specifically, winter weather over California. Relationships between winter cyclone/anticyclone behavior and daily precipitation/cold temperature extremes over Western North America (the West) were examined and yielded two simple indices summarizing North Pacific transient activity relevant to regional climates. These indices are strongly related to the observed inter-annual variability of daily precipitation and cold temperature extremes over the West as well as to large scale seasonally averaged near surface climate conditions (e.g., air temperature at 2 m and wind at 10 m). In fact, they represent the synoptic links that accomplish the teleconnections. Comparison of patterns derived from NCEP-NCAR and CNRM-CM3 revealed that the model reproduces links between cyclone/anticyclone frequencies over the Northeastern Pacific and extra-tropical climate conditions but is deficient in relation to tropical climate variability. The connections between these synoptic indices and Western weather are well reproduced by the model. Under advanced global warming conditions, that is, the last half of the century, the model predicts a significant reduction of cyclonic transients throughout the mid-latitude North Pacific with the exception of the far northern and northeastern domains. Anticyclonic transients respond somewhat more regionally but consistently to strong greenhouse forcing, with notably fewer anticyclones over the Okhotsk/Kamchatka sector and generally more anticyclones in the Northeastern Pacific. These modifications of synoptic weather result in regional feedbacks, that is, regional synoptic alterations of the anthropogenic warming signal around the North Pacific. In the eastern Pacific, for example, synoptic feedbacks, having to do especially with the northward shift of the eastern Pacific storm-track (responding, in turn, to a weaker equator-to-pole temperature gradient), are favorable to more anticyclonic conditions off the American mid-latitude west coast and more cyclonic conditions at higher latitudes. These circulation feedbacks further reduce the equator-to-pole temperature gradient by favoring high-latitude mean winter warming especially over a broad wedge of the Arctic north of the Bering Sea and moderating the warming along the mid-latitude west coast of north America while also reducing precipitation frequencies from California to Northern Mexico.

Domaines

Climatologie

Dates et versions

hal-00322454 , version 1 (17-09-2008)

Identifiants

Citer

Alice Favre, Alexander Gershunov. Pacific cyclonic and anticyclonic transients in a global warming context: possible consequences for Western North American daily precipitation and temperature extremes. Climate Dynamics, 2008, pp.0930-7575 (Print) 1432-0894 (Online). ⟨10.1007/s00382-008-0417-3⟩. ⟨hal-00322454⟩
54 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More