Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders.
Résumé
An increased risk for multiple sclerosis and schizophrenia is observed at increasing latitude and in patients born in winter or spring. To explore a possible link between maternal vitamin D deficiency and these brain disorders, we examined the impact of prenatal hypovitaminosis D on protein expression in the adult rat brain. Vitamin D-deficient female rats were mated with vitamin D normal males. Pregnant females were kept vitamin D-deficient until birth whereupon they were returned to a control diet. At week 10, protein expression in the progeny's prefrontal cortex and hippocampus was compared with control animals using silver staining 2-D gels associated with MS and newly devised data mining software. Developmental vitamin D (DVD) deficiency caused a dysregulation of 36 brain proteins involved in several biological pathways including oxidative phosphorylation, redox balance, cytoskeleton maintenance, calcium homeostasis, chaperoning, PTMs, synaptic plasticity and neurotransmission. A computational analysis of these data revealed that (i) nearly half of the molecules dysregulated in our animal model have also been shown to be misexpressed in either schizophrenia and/or multiple sclerosis and (ii) an impaired synaptic network may be a consequence of mitochondrial dysfunction.