Quasi-isolated elements in reductive groups - Archive ouverte HAL
Article Dans Une Revue Communications in Algebra Année : 2005

Quasi-isolated elements in reductive groups

Résumé

A semisimple element $s$ of a connected reductive group $G$ is said {\it quasi-isolated} (respectively {\it isolated}) if $C_G(s)$ (respectively $C_G^0(s)$) is not contained in a Levi subgroup of a proper parabolic subgroup of $G$. We study properties of quasi-isolated semisimple elements and give a classification in terms of the affine Dynkin diagram of $G$. Tables are provided for adjoint simple groups.

Dates et versions

hal-00318689 , version 1 (04-09-2008)

Identifiants

Citer

Cédric Bonnafé. Quasi-isolated elements in reductive groups. Communications in Algebra, 2005, 33, pp.2315-2337. ⟨10.1081/AGB-200063602⟩. ⟨hal-00318689⟩
73 Consultations
0 Téléchargements

Altmetric

Partager

More