Analysis of 5 source separation algorithms on simulated EEG signals - Archive ouverte HAL
Article Dans Une Revue Research in Computer Science / Special Issue in Electronics and Biomedical Informatics, Computer Science and Informatics Année : 2008

Analysis of 5 source separation algorithms on simulated EEG signals

Résumé

In this paper we evaluate the performance of 5 source separation algorithms (AMUSE, SOBI, SOBI-RO, SONS, JADE-TD) on simulated EEG signals. A first result evaluates the influence of the noise and signal characteristics (frequency, length, SNR) on the algorithms performance. A second objective is to introduce a new performance criterion, Eigen Values Vector's Norm-1 Distance (IEV) which can be used to compare two matrices and is potentially useful on real signals. We validate this new index by comparing it with classic performance indices used in source separation.
Fichier non déposé

Dates et versions

hal-00317734 , version 1 (03-09-2008)

Identifiants

  • HAL Id : hal-00317734 , version 1

Citer

Ricardo-Antonio Salido-Ruiz, Rebeca Romo-Vázquez, Radu Ranta, Lorenzo Leija. Analysis of 5 source separation algorithms on simulated EEG signals. Research in Computer Science / Special Issue in Electronics and Biomedical Informatics, Computer Science and Informatics, 2008, 35, pp.177-186. ⟨hal-00317734⟩
53 Consultations
0 Téléchargements

Partager

More