Tsunami wave energy
Résumé
In the vast literature on tsunami research, few articles have been devoted to energy issues. A theoretical investigation on the energy of waves generated by bottom motion is performed here. We start with the full incompressible Euler equations in the presence of a free surface and derive both dispersive and non-dispersive shallow-water equations with an energy equation. It is shown that dispersive effects only appear at higher order in the energy budget. Then we solve the Cauchy-Poisson problem of tsunami generation for the linearized water wave equations. Exchanges between potential and kinetic energies are clearly revealed.
Domaines
Mécanique des fluides [physics.class-ph] Physique Atmosphérique et Océanique [physics.ao-ph] Géophysique [physics.geo-ph] Equations aux dérivées partielles [math.AP] Océan, Atmosphère Systèmes Solubles et Intégrables [nlin.SI] Formation de Structures et Solitons [nlin.PS] Physique Numérique [physics.comp-ph]Origine | Fichiers produits par l'(les) auteur(s) |
---|