Ergodic averages with deterministic weights - Archive ouverte HAL Access content directly
Journal Articles Annales de l'Institut Fourier Year : 2002

Ergodic averages with deterministic weights


The purpose of this paper is to study ergodic averages with deterministic weights. More precisely we study the convergence of the ergodic averages of the type $\frac{1}{N} \sum_{k=0}^{N-1} \theta (k) f \circ T^{u_k}$ where $\theta = (\theta (k) ; k\in \NN)$ is a bounded sequence and $u = (u_k ; k\in \NN)$ a strictly increasing sequence of integers such that for some $\delta<1$ $$ S_N (\theta , u) := \sup_{\alpha \in \pRR} \left| \sum_{k=0}^{N-1} \theta (k) \exp (2i\pi \alpha u_k ) \right| = O (N^{\delta}) \ , \leqno{({\cal H}_1)} $$ i.e., there exists a constant $C$ such that $S_N (\theta , u) \leq C N^{\delta} $. We define $\delta (\theta , u)$ to be the infimum of the $\delta $ satisfying $\H_1$ for $\theta $ and $u$.


Fichier principal
Vignette du fichier
AIF2002.pdf (199.55 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00308799 , version 1 (01-08-2008)



Fabien Durand, Dominique Schneider. Ergodic averages with deterministic weights. Annales de l'Institut Fourier, 2002, 52, pp.561-583. ⟨hal-00308799⟩
93 View
80 Download



Gmail Facebook X LinkedIn More