Recent progress in continuous and hybrid reachability analysis
Résumé
Set-based reachability analysis computes all possible states a system may attain, and in this sense provides knowledge about the system with a completeness, or coverage, that a finite number of simulation runs can not deliver. Due to its inherent complexity, the application of reachability analysis has been limited so far to simple systems, both in the continuous and the hybrid domain. In this paper we present recent advances that, in combination, significantly improve this applicability, and allow us to find better balance between computational cost and accuracy. The presentation covers, in a unified manner, a variety of methods handling increasingly complex types of continuous dynamics (constant derivative, linear, nonlinear). The improvements include new geometrical objects for representing sets, new approximation schemes, and more flexible combinations of graph-search algorithm and partition refinement. We report briefly some preliminary experiments that have enabled the analysis of systems previously beyond reach.