Realisation of measured dynamics as uniquely ergodic minimal homeomorphisms on manifolds - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Realisation of measured dynamics as uniquely ergodic minimal homeomorphisms on manifolds

Résumé

We prove that the family of measured dynamical systems which can be realised as uniquely ergodic minimal homeomorphisms on a given manifold (of dimension at least two) is stable under measured extension. As a corollary, any ergodic system with an irrational eigenvalue is isomorphic to a uniquely ergodic minimal homeomorphism on the two-torus. The proof uses the following improvement of Weiss relative version of Jewett-Krieger theorem: any extension between two ergodic systems is isomorphic to a skew-product on Cantor sets.
Fichier principal
Vignette du fichier
Realisation-36.pdf (498.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00302854 , version 1 (21-07-2008)

Identifiants

Citer

François Béguin, Sylvain Crovisier, Frédéric Le Roux. Realisation of measured dynamics as uniquely ergodic minimal homeomorphisms on manifolds. 2008. ⟨hal-00302854⟩
126 Consultations
89 Téléchargements

Altmetric

Partager

More