An Efficient Algorithm for a Sharp Approximation of Universally Quantified Inequalities - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

An Efficient Algorithm for a Sharp Approximation of Universally Quantified Inequalities

Résumé

This paper introduces a new algorithm for solving a sub-class of quantified constraint satisfaction problems (QCSP) where existential quantifiers precede universally quantified inequalities on continuous domains. This class of QCSPs has numerous applications in engineering and design. We propose here a new generic branch and prune algorithm for solving such continuous QCSPs. Standard pruning operators and solution identification operators are specialized for universally quantified inequalities. Special rules are also proposed for handling the parameters of the constraints. First experimentation show that our algorithm outperforms the state of the art methods.
Fichier principal
Vignette du fichier
QINE-SAC.pdf (172.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00297250 , version 1 (15-07-2008)

Identifiants

Citer

Alexandre Goldsztejn, Claude Michel, Michel Rueher. An Efficient Algorithm for a Sharp Approximation of Universally Quantified Inequalities. ACM symposium on Applied computing, Mar 2008, Fortaleza, Ceara, Brazil. pp.134-139. ⟨hal-00297250⟩
97 Consultations
93 Téléchargements

Altmetric

Partager

More