Global attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in $L^2(\T)$ - Archive ouverte HAL
Article Dans Une Revue Dynamics of Partial Differential Equations Année : 2009

Global attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in $L^2(\T)$

Résumé

We prove that the weakly damped cubic Schrödinger flow in $L^2(\T)$ provides a dynamical system that possesses a global attractor. The proof relies on a sharp study of the behavior of the associated flow-map with respect to the weak $ L^2(\T) $-convergence inspired by a previous work of the author. Combining the compactness in $ L^2(\T) $ of the attractor with the approach developed by Goubet, we show that the attractor is actually a compact set of $ H^2(\T) $. This asymptotic smoothing effect is optimal in view of the regularity of the steady states.
Fichier principal
Vignette du fichier
periodicattractor7.pdf (254.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00291662 , version 1 (27-06-2008)
hal-00291662 , version 2 (02-07-2008)
hal-00291662 , version 3 (05-05-2009)

Identifiants

Citer

Luc Molinet. Global attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in $L^2(\T)$. Dynamics of Partial Differential Equations, 2009, 6 (1), pp.15-34. ⟨hal-00291662v3⟩
192 Consultations
183 Téléchargements

Altmetric

Partager

More