Inverse zero-sum problems and algebraic invariants - Archive ouverte HAL
Article Dans Une Revue Acta Arithmetica Année : 2008

Inverse zero-sum problems and algebraic invariants

Benjamin Girard

Résumé

In this article, we study the maximal cross number of long zero-sumfree sequences in a finite Abelian group. Regarding this inverse-type problem, we formulate a general conjecture and prove, among other results, that this conjecture holds true for finite cyclic groups, finite Abelian p-groups and for finite Abelian groups of rank two. Also, the results obtained here enable us to improve, via the resolution of a linear integer program, a result of W. Gao and A. Geroldinger concerning the minimal number of elements with maximal order in a long zero-sumfree sequence of a finite Abelian group of rank two.
Fichier principal
Vignette du fichier
InversezerosumproblemsIbis.pdf (190.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00289737 , version 1 (23-06-2008)
hal-00289737 , version 2 (18-10-2010)

Identifiants

Citer

Benjamin Girard. Inverse zero-sum problems and algebraic invariants. Acta Arithmetica, 2008, 135 (3), pp.231-246. ⟨10.4064/aa135-3-3⟩. ⟨hal-00289737v2⟩
125 Consultations
155 Téléchargements

Altmetric

Partager

More