Inverse zero-sum problems and algebraic invariants
Résumé
In this article, we study the maximal cross number of long zero-sumfree sequences in a finite Abelian group. Regarding this inverse-type problem, we formulate a general conjecture and prove, among other results, that this conjecture holds true for finite cyclic groups, finite Abelian p-groups and for finite Abelian groups of rank two. Also, the results obtained here enable us to improve, via the resolution of a linear integer program, a result of W. Gao and A. Geroldinger concerning the minimal number of elements with maximal order in a long zero-sumfree sequence of a finite Abelian group of rank two.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...