Robust multi-target sensing/tracking in the Bayesian Occupancy Filter framework - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Robust multi-target sensing/tracking in the Bayesian Occupancy Filter framework

Kamel Mekhnacha
  • Fonction : Auteur
  • PersonId : 849018
David Raulo
  • Fonction : Auteur
  • PersonId : 849019

Résumé

We present the “Bayesian Occupancy Filter” (BOF) and the “Fast Clustering- Tracking” algorithms as a framework for robust sensing and multi-target tracking using multiple sensors. Perceiving of the surrounding physical environment reliably is a major demanding in smart systems requiring a high level of safety such as car driving assistant, autonomous robots, and surveillance. The dynamic environment need to be perceived and modeled according to the sensor measurements which could be noisy. To fit such a requirement, we propose a hierarchical approach in which two filtering layers are used: (i) Robust grid-level sensor fusion using the “Bayesian Occupancy Filter” algorithm in order to construct an occupancy/velocity grid representation of the environment. (ii) Robust object-level tracking using the “Fast Clustering-Tracking”.
Fichier principal
Vignette du fichier
JFRB.pdf (174.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00278037 , version 1 (08-05-2008)

Identifiants

  • HAL Id : hal-00278037 , version 1

Citer

Kamel Mekhnacha, David Raulo. Robust multi-target sensing/tracking in the Bayesian Occupancy Filter framework. Journées Francophone sur les Réseaux Bayésiens, May 2008, Lyon, France. ⟨hal-00278037⟩

Collections

JFRB08
112 Consultations
103 Téléchargements

Partager

More