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Robust multi-target sensing/tracking in the
Bayesian Occupancy Filter framework

Kamel Mekhnacha® — David Raulo®

* Probayes, 345, rue Lavoisier, F-38030 St Ismier Cedex
{Kamel.Mekhnacha, David.Raulo}@probayes.com

ABSTRACT. We present the “Bayesian Occupancy Filter” (BOF) and the $E&Clustering-
Tracking” algorithms as a framework for robust sensing andltirtarget tracking using multi-
ple sensors. Perceiving of the surrounding physical emwirent reliably is a major demanding
in smart systems requiring a high level of safety such as caing) assistant, autonomous
robots, and surveillance. The dynamic environment neee foebceived and modeled accord-
ing to the sensor measurements which could be noisy. To fitsuequirement, we propose a
hierarchical approach in which two filtering layers are used

(i) Robust grid-level sensor fusion using the “Bayesian @ancy Filter” algorithm in
order to construct an occupancy/velocity grid representabf the environment.

(ii) Robust object-level tracking using the “Fast ClustegiTracking”.

RESUME. Nous présentons les algorithmes “Bayesian Occupancy rFi(l@OF) et “Fast
Clustering-Tracking” comme un cadre pour la perceptionuste et le suivi de cibles multiples
en utilisant plusieurs capteurs. Percevoir I'environnerghysique d’'une maniére fiable est une
exigence clef dans les systemes intelligents nécessitagrand degré de sécurité tels que I'as-
sistante a la conduite automobile, la robotique autonomka surveillance. L’environnement
dynamique doit étre percu et modélisé en utilisant les nesstapteurs généralement bruitées.
Pour répondre a cette exigence, nous proposons une apploétachique dans laquelle deux
niveaux de filtrage sont utilisés:

(i) Fusion robuste de capteurs en utilisant I'algorithmeadfgesian Occupancy Filter” dans
lequel 'environnement dynamique est représenté par uile gfoccupation/vitesse.

(i) Suivi robuste d’objets en utilisant I'algorithme “Fa€lustering-Tracking”.
KEYWORDSBayesian inference, multi-sensor data fusion, multi-eatgacking, occupancy grid.

MOTS-CLES :Inférence Bayésienne, fusion multi-capteurs, suivi ddesitmultiples, grille
d’occupation.
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Figure 1. Robust Sensing/Tracking system architecture.

1. Introduction

It has been shown that the dynamic environment can be effigiand robustly
represented by the Bayesian Occupancy Filter (BOF) @axwpl, 2008). In the
BOF framework, this environment is decomposed into a gadeld representation
(Moravec, 1988) in which both the occupancy and the veladigiributions are esti-
mated for each grid cell. In such a representation, conceuts as objects or tracks
do not exist and the estimation is achieved at the cell letgwever, the object-
level representation is mandatory for applications negtigh-level representations
of obstacles and their motion.

To achieve this, a natural approach is to perform clusteosimghe BOF output
grid in order to extract objects. We present in this paperghdustering-tracking
algorithm. Its main ideas are:

1) using the prediction result of the tracking module as anfof feedback to the
clustering module in order to avoid searching in the conepdid,

2) using both occupancy and velocity estimates in order tebseparate the ex-
tracted clusters.

This algorithm reduces drastically the complexity of théadassociation. Com-
pared with the traditional data association approachds asche joint probabilistic
data association (JPDA) algorithm (Bar-Shaletral., 1988), our algorithm demands
less computational cost, so as to be suitable for envirotsneith large amount of
dynamic objects and/or a large amount of sensor obsergtion

The proposed sensing/tracking framework is based on arbiécal approach in
which two filtering layers are used (Fig. 1). In this architee, the output grid of the
BOF filter (i.e, the probability distributions over the opancy and over the velocity
of the cell) is used as input for the object tracker by exingobbject hypothesis from
the grid.

The paper is organised as follows. In the next section, they&8ian Occupancy
Filter” (BOF) algorithm is briefly described. The “Fast Clesng-Tracking” algo-
rithm is presented in section Ill. Finally, conclusions drawn in section IV.
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2. Bayesian Occupancy Filter (BOF)

The Bayesian Occupancy Filter (BOF) is represented as altmensional grid-
based decomposition of the environment. Each cell of the gwntains two proba-
bility distributions. The probability distribution oveh¢ occupancy of the cell, and
the probability distribution over its velocity. Given a sétinput sensor readings, the
BOF algorithm allows to update the occupancy/velocitynates of each grid cell.

BOF is a special implementation of the Bayesian filter apginddazwinski, 1970)
(Thrunet al, 2005). This approach addresses the general problem akieely es-
timating the posterior probability distributiaR(X* | Z*) of the stateX of a system
conditioned on its observatidi. This posterior distribution is obtained in two stages:
prediction and estimation. The prediction stage computesiori prediction of the
target’s current state known as the prior distribution. €ksttmation stage then com-
putes the posterior distribution by using the predictiothvthe current measurement
of the sensor.

In the case of the BOF, using this prediction/estimatioresah allows filtering out
false alarms, miss-detections, and localization erroeeimsors data readings. Figure
2 shows an example of BOF output using a computer vision dactte. The input of
the BOF in this case is, for each time step, a set of boundirgdaorresponding to the
detected vehicles (red boxes). The output represents afyjoidcupancy probability
(blue-to-red mapped color) and mean velocity (red arrostjrates.

The Bayesian model presented in the following text is a rafdation of the one
we presented in (Tagt al, 2008). The aim of this reformulation is to make clearer
the strong link between the discretization of the space laadiscretization of the ve-
locity, which reduces the number of the used random varsadnhel makes the model
easier to explain. The key idea of the model is to represerthspace using a regu-
lar grid. Given this space discretization and assumingdhgicts do not overlap, the
velocity of a givenc cell at a timet is directly linked to the identity of its antecedent
cell A, from which the content of celt moved between — 1 andt. In other words,
we can define the velocity of a given cell by providing the nadé its antecedent.
Therefore, estimating the velocity of a given cell is eqléwiito estimating a proba-
bility table over all its possible antecedents. Possibte@dents of a cell are defined
by providing a neighbourhood from which the cell is reackdhla time step. This
model applies also to velocities needing more than one tiegefer a neighbour cell to
reachc. However, for simplicity we will assume only one-step vélies (neighbours
reachinge in one time step).

2.1. The BOF model

2.1.1. Variables

For a given cell having € Y as index in the grid, let:
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- At € A. C Y represents each possible antecedent ofccelter all the cells
in the grid domairn). The set of antecedent cells of cells denoted byA, and is
defined as a neighbourhood of the cell

— A7t € A. c Y the same agl! but for the previous time step.

—-0! € O = {0,1} is a boolean variable representing the state of the cell in
terms of occupancy at timg either[O. = 1] if occupied,[O. = 0] if empty. Given
the independency hypothesis, the occupancy of each céthat is considered apart
from the occupancy of its neighbouring cells at titne

- Z!'e Z,1 <i< S €N, is ageneric notation for measurements yielded by each
sensori, considering a total of sensors yielding a measurement at the considered
time instant.

2.1.2. Joint distribution factors

The following expression gives the decomposition of thatjdiistribution of the
relevant variables according to Bayes’ rule and dependassymptions:

P(ATTALOLZy - Zg) =
S
P(AZYP(AL | ATHPOL | AT [T P2 ] ALOD). [1]
=1

The parametric form and semantics of each component of thiedecomposition
are as follows:

— P(A!~1)is the probability for a given neighbouring cell. to be the antecedent
of cattimet — 1. In order to represent the fact that celf a priori equally reachable
from all possible antecedent cells in the considered neighinod, this probability
table is initialised as uniform and is updated in each tirep.st

— P(A! | AL=1) is the distribution over antecedents at tingiven the antecedent
of cell c att — 1. It represents the prediction (dynamic) model over vejodit we
assume a perfeconstant velocity hypothedigtween the two time framés- 1 and
t, this distribution is simply:

P(AL] ALY = P(ATL,).

In other words, the predicted probability is simply the pabliity at the preceding
time instant for the antecedenttat 1.
Considering imperfeatonstant velocity hypothesisay be done by introducing:

- E € {0,1} = “There was a prediction error”,

- P(E) = ¢ the probability of violating theconstant velocity hypothesfa
parameter of the model).

If we define:
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- P(AL| AL E) = P(AL),

- P(AL | ALY B) = U(AL) (Uniform predicted antecedent (velocity) when
constant velocity hypothedisviolated),

then,P(A! | AL=1) may be written as a mixture:

P(AL|ASY) = P(E)P(AL| A —E) + P(E)P(AL | AL E)
— (1= QP(A'L,) +eu(AL)

= (1-oPALL) +¢/Adl.

— P(O! | At=1) is the distribution over occupancy given the antecedenebfcc
att — 1. It represents the prediction (dynamic) model over occapalfi we assume
a perfectconstant velocity hypothedietween the two time frameés— 1 andt, this
distribution is simply:

P(OL] A7) = P(O'L,).

In other words, the predicted probability is simply the pabliity at the preceding
time instant for the antecedenttat 1. When considering imperfecbnstant velocity
hypothesisP (O | AL~1) may be written as a mixture:

P(O. | A7) = P(RE)P(Oc| AT =E) + P(E)P(O. | A" E)

(1= €)P(O'L20) +eU(O;)

= (1-9P(0';1) +¢/2.

— P(z!] At O!) is thedirect modefor sensot. It yields the probability of a mea-
surement given the occupan®y, and the antecedent (velocity). of cell c. Mea-
surements for all sensors are assumed to have been itadkgpendently from each
other.

For sensors providing measurements depending exclusif’elgcupancy, this dis-
tribution can be written a®(Z! | O%). In the same manner, for sensors providing
measurements depending exclusively of the velocity, thlEgidution can be written
asP(Z! | AL).

2.2. Occupancy and velocity estimation using the BOF model

At each time step, the estimation of the occupancy and wglocia cell is an-
swered through Bayesian inference on the model given intitrqud ]. This inference
leads to a Bayesian filtering process. In this context, tlegliption step propagates
cell occupancy and antecedent (velocity) distributionsadh cell in the grid to get
the predictionP(O% A!). In the estimation step? (O’ AL) is updated by taking into
account the observations yielded by the sen§ffs, P(Z! | A% O?) to obtain the a
posteriori state estimat®(O! A | [Z--- ZL]). This allows by marginalization to
computeP(OL | [Z}--- ZL]) and P(AL | [Z% - - - Z%]) that will be used for prediction
in the next iteration.
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laXa)e) BOF_INPUT

Figure 2. Example of BOF output using a computer vision car detectonpst (red

boxes). The images are provided by a camera mounted on thiagneyo-vehicle.
The BOF output is projected back on the image. It represemggdiof occupancy
probability (blue-to-red mapped color) and the mean veipfied arrows) estimates.

It's important to notice that the distributioR( A%) over velocity is updated even
when no velocity sensors are available. Indeed, supposeawe ¢nly one occu-
pancy sensor described by the moddlZi . | OY). The a posteriori distribution
P(AL | [Z5cd) leads to the formula:

P(AL | [Zbed]) o > PAHPAL AT
A7 le A,

> P(OL| ALY P([Zbed | OL).
ote{o,1}

This allows to update the velocity distribution even whervalcity sensors are avail-
able. In this case, the update is based exclusively on thgpaocy observations.

When an additional velocity sensB Z{g, | A%) is available, it should be used to
update the estimate [2] as follows:

P(A | [Zoce Zyed)) o< P(AL | [Zocd) P((Zvel] | Ao)-

3. The “Fast Clustering-Tracking” algorithm

In many applications, the object level representation imateded. We propose
to use a layered architecture as shown in Fig. 1 to obtairrépiesentation. In our
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former work (Tayet al., 2008), the data association is achieved using a clas§i&s\ J
algorithm. However, in a cluttered environment with a langenber of moving ob-
jects, the JPDA (Bar-Shaloet al, 1988) suffers from the combinational explosion
of hypothesises. To overcome this problem, we propose a nbject detecting and
tracking algorithm. This algorithm could be roughly diviimto a clustering mod-
ule, an ambiguous association handling module and a trgekid track management
module.

3.1. Clustering

The clustering module takes the occupancy/velocity grithefBOF as the input
and extracts object level reports from it. A natural aldoritto achieve this is to
connect the eight-neighbor cells according to an occuptimegholdvcc_threshold.

In addition to the occupancy values, a threshold of the Mafabis distance between
the velocity distributionsel_threshold is also employed to distinguish the objects
that are close to each other but with different moving vdiesi

In order to avoid searching for clusters in the whole grid, wge the predicted
targets’ states as a form of feedback. For a given targetiittl, the predicted state
is used to define a region of interest (ROI) in which the clusteprocess starts. After
a starting point with an occupancy probability value gre#tan theocc_threshold
is found in the ROI, théd is propagated in the ID grid using the connectivity critario
among the non-associated cells (cells with = 0).

A report for the tracker is a 4-dimentional observation esponding to the po-
sition and the velocity of an extracted cluster. The 2D pmsitomponent of this
vector is computed as the mass center of the region corrdsppto the cluster pix-
els (cells) set. We also compute the corresponding covaiamatrix representing
the uncertainty of the observed position. The 2D velocitsnponent is simply the
weighted mean of the estimated velocities of all cells ofdluster. It comes also with
a covariance matrix representing the uncertainty of theiasion velocity.

3.2. Re-clustering and tracks merging

During the clustering process, three possible situatieesiio be considered.

— Case 1:no cell with P(occ) > occ_threshold is found. The target has not been
observed and no association is needed.

— Case 2:a clusterC of non-associated cells having(i, j) € C, P(occ(, j)) >
occ_threshold is extracted. These cells are then associated to the tatget(i, j) €
C, ID(c;,cj) = id. This situation occurs when there is no ambiguity in the eisso
ation. This is an advantageous situation allowing a fasiteling-association proce-
dure. Fortunately, this case is the most frequent one whplyiag the algorithm to
the real data.
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— Case 3:cells havingP(occ(i, j)) > occ_threshold exist. However, they have
already been assigned to other IDs. In this conflicted casepaervation (cluster)
could be possibly generated by two (or more) different terge

The first two cases are normal cases, however, the third saséereed to as an
ambiguous association case which need to be dealt with ireeéiadpmanner. The
ambiguous association could occur in the following twoaitons:

1) Different targets are being too close to each other andltserved cluster is in
fact the union of more than one observations generated ferelift targets.

2) The different tracked targets are corresponding to desimigject and should be
merged into one.

We take a re-clustering strategy to deal with the first situredind a cluster merging
strategy to deal with the second one.

Suppose when an ambiguous association occurs, a set of ffacks, - - - , T,
are the potential candidates to be associated to the oloselnster. We have to cut up
the extracted cluster and generate a sub-cluster (possilyy) for each candidate.
This re-clustering is achieved by a k-means (Bishop, 20@@)rehm using a simple
Cartesian distance. The considered distance is taken &etilie center of the sub-
cluster and a given cell. In this way, the first cause of theiguodus association is
handled.

To deal with the second cause of the ambiguous associat®mtroduce a con-
cept of “alias” which is in the form of a two-tuples to reprasthe duplicated tracks.
When an ambiguous association between two trd¢kandT; is detected, an alias
ALIAS(T;, T;) is initialized and added to a potential alias list.

At each frame, the tracker updates this list by confirmingisprbving the ex-
istence of each alias hypothesdd.7 AS(T;, T;) according to the observation of the
ambiguous association. At a given time stejpthe ambiguous association occurs be-
tweenT; andT};, and the aliasALI AS(T;, T;) is found in the potential alias list, the
probability P* (S(T;,T})) is increased by a confirming step using a Bayesian filtering
approach as follows:

P1(8) x P(F | S)
Pr1(S) x P(F|S) +[1— P1(S) x P(F | =S)

PY(S|F) =

where:

— S = "the T; andT} tracks are alias for the same object”.
— F' = "an ambiguous association between the tratkand7} is observed”.

The probability valuesP(F' | S) and P(F | —S) are constant parameters of the
tracker. The former denotes the probability of observingaaerbiguous association
when the two concerned tracks are alias of the same objedsas®l to a constant
value 0.8. The second denotes the probability of falselyenlisg an ambiguous
association and is set to 0.1.
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WhenALIAS(T;,Tj) is found in the potential alias list but is not observed as an
ambiguous association, its probability is decreased im#asi manner:
PYS) x P(=F | S)
P1(S) x P(=F | S)+[1 — Pt=1(9)] x P(=F | =S)’

PY(S |-F) =

According to the probability> (S(T7,T;)), the decision of merging of trackg
andT; could be made.

3.3. New tracks creation

For new targets creation, we introduce a concept “clusted’s® define a cell in
the BOF grid where we will try to find, for each step, a new (ramsociated) clus-
ter. Indeed, the searching for potential new targets ig afteéhe existing tracks are
processed. Thus, only non-associated cells will be preckssextract clusters as the
observations for the potential new targets. The “clusted%eoncept is general and
can be implemented via various strategies. The simplegegly is to insert a possible
seed in each cell of the grid. However, more sophisticatedegies could be more
efficient. For example, cluster seeds could be insertediardntrance regions of the
monitored area.

3.4. Tracks updating and deleting

The prediction and estimation of the targets are accomgididhy attaching a
Kalman filter (Kalman, 1960) with each track. Once assodiatea given track, a
report (Gaussian distributions for both position and vié§decorresponding to an ex-
tracted cluster is used as an observation to re-estimafeotiigon and velocity of the
track in a prediction-update step. For non-observed tramkly a prediction step is
taken by applying the dynamic model to the estimation resfulhe precedent time
step.

The deleting of tracks is also achieved in a Bayesian maifraar.existing trackl’
is associated with a given report (cluster), its existenmobability is increased using
the following formula:

) B PYE)x P(O| E)
PHE|O) = P=YE)x P(O| E)+ [l — P=1(E)] x P(O| -E)’
where:

— E = "the targetT exists”.
— O = "the targetT’ has been observed (associated)”.

The parameter® (-0 | E) and P(O | —F) are the tracker miss-detections and
false alarms probabilities respectively.
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If an existing target is not associated with any report ¢el)sits existence proba-
bility is decreased in the similar way:

‘ _ P'I(E) x P(-O | E)
PAEN0) = 5e1E < PO [ B) + 1= PEL(E)] < P(-0] ~B)

According to the existence probability, the track deletipgration is achieved by
applying a deleting threshold on it.

4. Conclusion

We presented a novel sensing/tracking algorithm for the B@mework. This
algorithm takes the occupancy/velocity grid of the BOF gmiirand extracts the ob-
jects from the grid with a clustering module which takes thediction of the tracking
module as a feedback to reduce the computational cost. Austecing and merg-
ing module is proposed to deal with the ambiguous data assmus. The extracted
objects are then tracked and managed in a probabilistic iMag.experiment results
show that the presented algorithm is robust as well as caatipoglly efficient so as
to be suitable for cluttered environment.

Our approach has been applied on real data and achievefiesatesults in sev-
eral conditions. The proposed algorithms have been usexvera driving assistance
projects in both highway and cluttered urban environmehte used sensor modali-
ties include: (i) multi-layer lidars, (ii) computer visiatetection algorithms (Fig. 2),
and (iii) stereovision-based 3D sensors.

According to confidentiality agreements of the on-goingjgets, we could not
provide these works in the publications. However, we are pmparing new experi-
ments using our own data sets in order to be able to presentitaii@e experimental
results in future publications.
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