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ABSTRACT. We present the “Bayesian Occupancy Filter” (BOF) and the “Fast Clustering-
Tracking” algorithms as a framework for robust sensing and multi-target tracking using multi-
ple sensors. Perceiving of the surrounding physical environment reliably is a major demanding
in smart systems requiring a high level of safety such as car driving assistant, autonomous
robots, and surveillance. The dynamic environment need to be perceived and modeled accord-
ing to the sensor measurements which could be noisy. To fit such a requirement, we propose a
hierarchical approach in which two filtering layers are used:

(i) Robust grid-level sensor fusion using the “Bayesian Occupancy Filter” algorithm in
order to construct an occupancy/velocity grid representation of the environment.

(ii) Robust object-level tracking using the “Fast Clustering-Tracking”.

RÉSUMÉ. Nous présentons les algorithmes “Bayesian Occupancy Filter” (BOF) et “Fast
Clustering-Tracking” comme un cadre pour la perception robuste et le suivi de cibles multiples
en utilisant plusieurs capteurs. Percevoir l’environnement physique d’une manière fiable est une
exigence clef dans les systèmes intelligents nécessitant un grand degré de sécurité tels que l’as-
sistante à la conduite automobile, la robotique autonome etla surveillance. L’environnement
dynamique doit être perçu et modélisé en utilisant les mesures capteurs généralement bruitées.
Pour répondre à cette exigence, nous proposons une approchehiérarchique dans laquelle deux
niveaux de filtrage sont utilisés:

(i) Fusion robuste de capteurs en utilisant l’algorithme “Bayesian Occupancy Filter” dans
lequel l’environnement dynamique est représenté par une grille d’occupation/vitesse.

(ii) Suivi robuste d’objets en utilisant l’algorithme “Fast Clustering-Tracking”.

KEYWORDS:Bayesian inference, multi-sensor data fusion, multi-target tracking, occupancy grid.

MOTS-CLÉS : Inférence Bayésienne, fusion multi-capteurs, suivi de cibles multiples, grille
d’occupation.
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Figure 1. Robust Sensing/Tracking system architecture.

1. Introduction

It has been shown that the dynamic environment can be efficiently and robustly
represented by the Bayesian Occupancy Filter (BOF) (Tayet al., 2008). In the
BOF framework, this environment is decomposed into a grid-based representation
(Moravec, 1988) in which both the occupancy and the velocitydistributions are esti-
mated for each grid cell. In such a representation, conceptssuch as objects or tracks
do not exist and the estimation is achieved at the cell level.However, the object-
level representation is mandatory for applications needing high-level representations
of obstacles and their motion.

To achieve this, a natural approach is to perform clusteringon the BOF output
grid in order to extract objects. We present in this paper a novel clustering-tracking
algorithm. Its main ideas are:

1) using the prediction result of the tracking module as a form of feedback to the
clustering module in order to avoid searching in the complete grid,

2) using both occupancy and velocity estimates in order to better separate the ex-
tracted clusters.

This algorithm reduces drastically the complexity of the data association. Com-
pared with the traditional data association approaches such as the joint probabilistic
data association (JPDA) algorithm (Bar-Shalomet al., 1988), our algorithm demands
less computational cost, so as to be suitable for environments with large amount of
dynamic objects and/or a large amount of sensor observations.

The proposed sensing/tracking framework is based on a hierarchical approach in
which two filtering layers are used (Fig. 1). In this architecture, the output grid of the
BOF filter (i.e, the probability distributions over the occupancy and over the velocity
of the cell) is used as input for the object tracker by extracting object hypothesis from
the grid.

The paper is organised as follows. In the next section, the “Bayesian Occupancy
Filter” (BOF) algorithm is briefly described. The “Fast Clustering-Tracking” algo-
rithm is presented in section III. Finally, conclusions aredrawn in section IV.
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2. Bayesian Occupancy Filter (BOF)

The Bayesian Occupancy Filter (BOF) is represented as a two-dimensional grid-
based decomposition of the environment. Each cell of the grid contains two proba-
bility distributions. The probability distribution over the occupancy of the cell, and
the probability distribution over its velocity. Given a setof input sensor readings, the
BOF algorithm allows to update the occupancy/velocity estimates of each grid cell.

BOF is a special implementation of the Bayesian filter approach (Jazwinski, 1970)
(Thrunet al., 2005). This approach addresses the general problem of recursively es-
timating the posterior probability distributionP (Xk | Zk) of the stateX of a system
conditioned on its observationZ. This posterior distribution is obtained in two stages:
prediction and estimation. The prediction stage computes an a priori prediction of the
target’s current state known as the prior distribution. Theestimation stage then com-
putes the posterior distribution by using the prediction with the current measurement
of the sensor.

In the case of the BOF, using this prediction/estimation scheme allows filtering out
false alarms, miss-detections, and localization errors insensors data readings. Figure
2 shows an example of BOF output using a computer vision car detector. The input of
the BOF in this case is, for each time step, a set of bounding boxes corresponding to the
detected vehicles (red boxes). The output represents a gridof occupancy probability
(blue-to-red mapped color) and mean velocity (red arrows) estimates.

The Bayesian model presented in the following text is a reformulation of the one
we presented in (Tayet al., 2008). The aim of this reformulation is to make clearer
the strong link between the discretization of the space and the discretization of the ve-
locity, which reduces the number of the used random variables and makes the model
easier to explain. The key idea of the model is to represent the 2D space using a regu-
lar grid. Given this space discretization and assuming thatobjects do not overlap, the
velocity of a givenc cell at a timet is directly linked to the identity of its antecedent
cell Ac from which the content of cellc moved betweent − 1 andt. In other words,
we can define the velocity of a given cell by providing the index of its antecedent.
Therefore, estimating the velocity of a given cell is equivalent to estimating a proba-
bility table over all its possible antecedents. Possible antecedents of a cell are defined
by providing a neighbourhood from which the cell is reachable in a time step. This
model applies also to velocities needing more than one time step for a neighbour cell to
reachc. However, for simplicity we will assume only one-step velocities (neighbours
reachingc in one time step).

2.1. The BOF model

2.1.1. Variables

For a given cell havingc ∈ Y as index in the grid, let:
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– At
c ∈ Ac ⊂ Y represents each possible antecedent of cellc over all the cells

in the grid domainY. The set of antecedent cells of cellc is denoted byAc and is
defined as a neighbourhood of the cellc.

– At−1

c ∈ Ac ⊂ Y the same asAt
c but for the previous time step.

– Ot
c ∈ O ≡ {0, 1} is a boolean variable representing the state of the cell in

terms of occupancy at timet, either[Oc = 1] if occupied,[Oc = 0] if empty. Given
the independency hypothesis, the occupancy of each cell at time t is considered apart
from the occupancy of its neighbouring cells at timet.

– Zt
i ∈ Z, 1 ≤ i ≤ S ∈ N, is a generic notation for measurements yielded by each

sensori, considering a total ofS sensors yielding a measurement at the considered
time instant.

2.1.2. Joint distribution factors

The following expression gives the decomposition of the joint distribution of the
relevant variables according to Bayes’ rule and dependencyassumptions:

P (At−1

c At
c Ot

c Zt
1
· · ·Zt

S) =

P (At−1

c )P (At
c | A

t−1

c )P (Ot
c | A

t−1

c )
S∏

i=1

P (Zt
i | A

t
c Ot

c). [1]

The parametric form and semantics of each component of the joint decomposition
are as follows:

– P (At−1

c ) is the probability for a given neighbouring cellAc to be the antecedent
of c at timet− 1. In order to represent the fact that cellc is a priori equally reachable
from all possible antecedent cells in the considered neighbourhood, this probability
table is initialised as uniform and is updated in each time step.

– P (At
c | At−1

c ) is the distribution over antecedents at timet given the antecedent
of cell c at t − 1. It represents the prediction (dynamic) model over velocity. If we
assume a perfectconstant velocity hypothesisbetween the two time framest − 1 and
t, this distribution is simply:

P (At
c | A

t−1

c ) = P (At−1

A
t−1

c

).

In other words, the predicted probability is simply the probability at the preceding
time instant for the antecedent att − 1.

Considering imperfectconstant velocity hypothesismay be done by introducing:

- E ∈ {0, 1} ≡ “There was a prediction error”,

- P (E) = ǫ the probability of violating theconstant velocity hypothesis(a
parameter of the model).

If we define:
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- P (At
c | A

t−1

c ¬E) = P (At−1

A
t−1

c

),

- P (At
c | At−1

c E) = U(At
c) (Uniform predicted antecedent (velocity) when

constant velocity hypothesisis violated),

then,P (At
c | A

t−1

c ) may be written as a mixture:

P (At
c | A

t−1

c ) = P (¬E)P (At
c | A

t−1

c ¬E) + P (E)P (At
c | A

t−1

c E)

= (1 − ǫ)P (At−1

At−1

c

) + ǫ U(At
c)

= (1 − ǫ)P (At−1

A
t−1

c

) + ǫ/‖Ac‖.

– P (Ot
c | At−1

c ) is the distribution over occupancy given the antecedent of cell c
at t − 1. It represents the prediction (dynamic) model over occupancy. If we assume
a perfectconstant velocity hypothesisbetween the two time framest − 1 andt, this
distribution is simply:

P (Ot
c | A

t−1

c ) = P (Ot−1

A
t−1

c

).

In other words, the predicted probability is simply the probability at the preceding
time instant for the antecedent att− 1. When considering imperfectconstant velocity
hypothesis, P (Ot

c | A
t−1

c ) may be written as a mixture:

P (Ot
c | A

t−1

c ) = P (¬E)P (Ot
c | A

t−1

c ¬E) + P (E)P (Ot
c | A

t−1

c E)

= (1 − ǫ)P (Ot−1

A
t−1

c

) + ǫ U(Ot
c)

= (1 − ǫ)P (Ot−1

A
t−1

c

) + ǫ/2.

– P (Zt
i | A

t
c Ot

c) is thedirect modelfor sensori. It yields the probability of a mea-
surement given the occupancyOt

c and the antecedent (velocity)At
c of cell c. Mea-

surements for all sensors are assumed to have been takenindependently from each
other.

For sensors providing measurements depending exclusivelyof occupancy, this dis-
tribution can be written asP (Zt

i | Ot
c). In the same manner, for sensors providing

measurements depending exclusively of the velocity, this distribution can be written
asP (Zt

i | A
t
c).

2.2. Occupancy and velocity estimation using the BOF model

At each time step, the estimation of the occupancy and velocity of a cell is an-
swered through Bayesian inference on the model given in Equation [1]. This inference
leads to a Bayesian filtering process. In this context, the prediction step propagates
cell occupancy and antecedent (velocity) distributions ofeach cell in the grid to get
the predictionP (Ot

c At
c). In the estimation step,P (Ot

c At
c) is updated by taking into

account the observations yielded by the sensors
∏S

i=1
P (Zt

i | At
c Ot

c) to obtain the a
posteriori state estimateP (Ot

c At
c | [Zt

1
· · ·Zt

S]). This allows by marginalization to
computeP (Ot

c | [Zt
1
· · ·Zt

S ]) andP (At
c | [Z

t
1
· · ·Zt

S ]) that will be used for prediction
in the next iteration.
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Figure 2. Example of BOF output using a computer vision car detector asinput (red
boxes). The images are provided by a camera mounted on the moving ego-vehicle.
The BOF output is projected back on the image. It represents agrid of occupancy
probability (blue-to-red mapped color) and the mean velocity (red arrows) estimates.

It’s important to notice that the distributionP (At
c) over velocity is updated even

when no velocity sensors are available. Indeed, suppose we have only one occu-
pancy sensor described by the modelP (Zt

OCC | Ot
c). The a posteriori distribution

P (At
c | [Z

t
OCC]) leads to the formula:

P (At
c | [Z

t
OCC]) ∝

∑

A
t−1

c ∈Ac

P (At−1

c )P (At
c | A

t−1

c )

∑

Ot
c
∈{0,1}

P (Ot
c | A

t−1

c )P ([Zt
OCC] | O

t
c).

This allows to update the velocity distribution even when novelocity sensors are avail-
able. In this case, the update is based exclusively on the occupancy observations.

When an additional velocity sensorP (Zt
VEL | At

c) is available, it should be used to
update the estimate [2] as follows:

P (At
c | [Z

t
OCC Zt

VEL]) ∝ P (At
c | [Z

t
OCC])P ([Zt

VEL] | At
c).

3. The “Fast Clustering-Tracking” algorithm

In many applications, the object level representation is demanded. We propose
to use a layered architecture as shown in Fig. 1 to obtain thisrepresentation. In our
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former work (Tayet al., 2008), the data association is achieved using a classical JPDA
algorithm. However, in a cluttered environment with a largenumber of moving ob-
jects, the JPDA (Bar-Shalomet al., 1988) suffers from the combinational explosion
of hypothesises. To overcome this problem, we propose a novel object detecting and
tracking algorithm. This algorithm could be roughly divided into a clustering mod-
ule, an ambiguous association handling module and a tracking and track management
module.

3.1. Clustering

The clustering module takes the occupancy/velocity grid ofthe BOF as the input
and extracts object level reports from it. A natural algorithm to achieve this is to
connect the eight-neighbor cells according to an occupancythresholdocc_threshold.
In addition to the occupancy values, a threshold of the Mahalanobis distance between
the velocity distributionsvel_threshold is also employed to distinguish the objects
that are close to each other but with different moving velocities.

In order to avoid searching for clusters in the whole grid, weuse the predicted
targets’ states as a form of feedback. For a given target withID id, the predicted state
is used to define a region of interest (ROI) in which the clustering process starts. After
a starting point with an occupancy probability value greater than theocc_threshold
is found in the ROI, theid is propagated in the ID grid using the connectivity criterion
among the non-associated cells (cells withID = 0).

A report for the tracker is a 4-dimentional observation corresponding to the po-
sition and the velocity of an extracted cluster. The 2D position component of this
vector is computed as the mass center of the region corresponding to the cluster pix-
els (cells) set. We also compute the corresponding covariance matrix representing
the uncertainty of the observed position. The 2D velocity component is simply the
weighted mean of the estimated velocities of all cells of thecluster. It comes also with
a covariance matrix representing the uncertainty of the observation velocity.

3.2. Re-clustering and tracks merging

During the clustering process, three possible situations need to be considered.

– Case 1:no cell withP (occ) ≥ occ_threshold is found. The target has not been
observed and no association is needed.

– Case 2:a clusterC of non-associated cells having∀c(i, j) ∈ C, P (occ(i, j)) ≥
occ_threshold is extracted. These cells are then associated to the targetid: ∀c(i, j) ∈
C, ID(ci, cj) = id. This situation occurs when there is no ambiguity in the associ-
ation. This is an advantageous situation allowing a fast clustering-association proce-
dure. Fortunately, this case is the most frequent one when applying the algorithm to
the real data.
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– Case 3:cells havingP (occ(i, j)) ≥ occ_threshold exist. However, they have
already been assigned to other IDs. In this conflicted case, an observation (cluster)
could be possibly generated by two (or more) different targets.

The first two cases are normal cases, however, the third case is refereed to as an
ambiguous association case which need to be dealt with in a special manner. The
ambiguous association could occur in the following two situations:

1) Different targets are being too close to each other and theobserved cluster is in
fact the union of more than one observations generated by different targets.

2) The different tracked targets are corresponding to a single object and should be
merged into one.

We take a re-clustering strategy to deal with the first situation and a cluster merging
strategy to deal with the second one.

Suppose when an ambiguous association occurs, a set of tracks T1, T2, · · · , Tm

are the potential candidates to be associated to the observed cluster. We have to cut up
the extracted cluster and generate a sub-cluster (possiblyempty) for each candidate.
This re-clustering is achieved by a k-means (Bishop, 2006) algorithm using a simple
Cartesian distance. The considered distance is taken between the center of the sub-
cluster and a given cell. In this way, the first cause of the ambiguous association is
handled.

To deal with the second cause of the ambiguous association, we introduce a con-
cept of “alias” which is in the form of a two-tuples to represent the duplicated tracks.
When an ambiguous association between two tracksTi andTj is detected, an alias
ALIAS(Ti, Tj) is initialized and added to a potential alias list.

At each frame, the tracker updates this list by confirming or disproving the ex-
istence of each alias hypothesisALIAS(Ti, Tj) according to the observation of the
ambiguous association. At a given time stept, if the ambiguous association occurs be-
tweenTi andTj , and the aliasALIAS(Ti, Tj) is found in the potential alias list, the
probabilityP t (S(Ti, Tj)) is increased by a confirming step using a Bayesian filtering
approach as follows:

P t(S | F ) =
P t−1(S) × P (F | S)

P t−1(S) × P (F | S) + [1 − P t−1(S)] × P (F | ¬S)
,

where:

– S ≡ “the Ti andTj tracks are alias for the same object”.

– F ≡ “an ambiguous association between the tracksTi andTj is observed”.

The probability valuesP (F | S) andP (F | ¬S) are constant parameters of the
tracker. The former denotes the probability of observing anambiguous association
when the two concerned tracks are alias of the same object andis set to a constant
value 0.8. The second denotes the probability of falsely observing an ambiguous
association and is set to 0.1.
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WhenALIAS(Ti, Tj) is found in the potential alias list but is not observed as an
ambiguous association, its probability is decreased in a similar manner:

P t(S |¬F ) =
P t−1(S) × P (¬F | S)

P t−1(S) × P (¬F | S) + [1 − P t−1(S)] × P (¬F | ¬S)
.

According to the probabilityP t (S(Ti, Tj)), the decision of merging of tracksTi

andTj could be made.

3.3. New tracks creation

For new targets creation, we introduce a concept “cluster seed” to define a cell in
the BOF grid where we will try to find, for each step, a new (non-associated) clus-
ter. Indeed, the searching for potential new targets is after all the existing tracks are
processed. Thus, only non-associated cells will be processed to extract clusters as the
observations for the potential new targets. The “cluster seed” concept is general and
can be implemented via various strategies. The simplest strategy is to insert a possible
seed in each cell of the grid. However, more sophisticated strategies could be more
efficient. For example, cluster seeds could be inserted onlyin entrance regions of the
monitored area.

3.4. Tracks updating and deleting

The prediction and estimation of the targets are accomplished by attaching a
Kalman filter (Kalman, 1960) with each track. Once associated to a given track, a
report (Gaussian distributions for both position and velocity) corresponding to an ex-
tracted cluster is used as an observation to re-estimate theposition and velocity of the
track in a prediction-update step. For non-observed tracks, only a prediction step is
taken by applying the dynamic model to the estimation resultof the precedent time
step.

The deleting of tracks is also achieved in a Bayesian manner.If an existing trackT
is associated with a given report (cluster), its existence probability is increased using
the following formula:

P t(E | O) =
P t−1(E) × P (O | E)

P t−1(E) × P (O | E) + [1 − P t−1(E)] × P (O | ¬E)
,

where:

– E ≡ “the targetT exists”.

– O ≡ “the targetT has been observed (associated)”.

The parametersP (¬O | E) andP (O | ¬E) are the tracker miss-detections and
false alarms probabilities respectively.
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If an existing target is not associated with any report (cluster), its existence proba-
bility is decreased in the similar way:

P t(E | ¬O) =
P t−1(E) × P (¬O | E)

P t−1(E) × P (¬O | E) + [1 − P t−1(E)] × P (¬O | ¬E)
.

According to the existence probability, the track deletingoperation is achieved by
applying a deleting threshold on it.

4. Conclusion

We presented a novel sensing/tracking algorithm for the BOFframework. This
algorithm takes the occupancy/velocity grid of the BOF as input and extracts the ob-
jects from the grid with a clustering module which takes the prediction of the tracking
module as a feedback to reduce the computational cost. A re-clustering and merg-
ing module is proposed to deal with the ambiguous data associations. The extracted
objects are then tracked and managed in a probabilistic way.The experiment results
show that the presented algorithm is robust as well as computationally efficient so as
to be suitable for cluttered environment.

Our approach has been applied on real data and achieved satisfied results in sev-
eral conditions. The proposed algorithms have been used in several driving assistance
projects in both highway and cluttered urban environments.The used sensor modali-
ties include: (i) multi-layer lidars, (ii) computer visiondetection algorithms (Fig. 2),
and (iii) stereovision-based 3D sensors.

According to confidentiality agreements of the on-going projects, we could not
provide these works in the publications. However, we are nowpreparing new experi-
ments using our own data sets in order to be able to present quantitative experimental
results in future publications.
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