Interference of Bose-Einstein condensates: quantum non-local effects - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review A : Atomic, molecular, and optical physics [1990-2015] Année : 2008

Interference of Bose-Einstein condensates: quantum non-local effects

Résumé

Quantum systems in Fock states do not have a phase. When two or more Bose-Einstein condensates are sent into interferometers, they nevertheless acquire a relative phase under the effect of quantum measurements. The usual explanation relies on spontaneous symmetry breaking, where phases are ascribed to all condensates and treated as unknown classical quantities. However, this image is not always sufficient: when all particles are measured, quantum mechanics predicts probabilities that are sometimes in contradiction with it, as illustrated by quantum violations of local realism. In this letter, we show that interferometers can be used to demonstrate a large variety of violations with an arbitrarily large number of particles. With two independent condensates, we find violations of the BCHSH inequalities, as well as new N-body Hardy impossibilities. With three condensates, we obtain new GHZ (Greenberger, Horne and Zeilinger) type contradictions.
Fichier principal
Vignette du fichier
Interf-Letter-2-columns.pdf (226.59 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00276743 , version 1 (01-05-2008)
hal-00276743 , version 2 (19-05-2009)

Identifiants

Citer

William J. Mullin, Franck Laloë. Interference of Bose-Einstein condensates: quantum non-local effects. Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2008, A78, pp.061605. ⟨10.1103/PhysRevA.78.061605⟩. ⟨hal-00276743v2⟩
91 Consultations
259 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More