LARGE DEVIATIONS FOR RANDOM SPECTRAL MEASURES AND SUM RULES
Résumé
We prove a Large Deviation Principle for the random spec- tral measure associated to the pair $(H_N; e)$ where $H_N$ is sampled in the GUE(N) and e is a fixed unit vector (and more generally in the $\beta$- extension of this model). The rate function consists of two parts. The contribution of the absolutely continuous part of the measure is the reversed Kullback information with respect to the semicircle distribution and the contribution of the singular part is connected to the rate function of the extreme eigenvalue in the GUE. This method is also applied to the Laguerre and Jacobi ensembles, but in thoses cases the expression of the rate function is not so explicit.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...