LARGE DEVIATIONS FOR RANDOM SPECTRAL MEASURES AND SUM RULES - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

LARGE DEVIATIONS FOR RANDOM SPECTRAL MEASURES AND SUM RULES

Résumé

We prove a Large Deviation Principle for the random spec- tral measure associated to the pair $(H_N; e)$ where $H_N$ is sampled in the GUE(N) and e is a fixed unit vector (and more generally in the $\beta$- extension of this model). The rate function consists of two parts. The contribution of the absolutely continuous part of the measure is the reversed Kullback information with respect to the semicircle distribution and the contribution of the singular part is connected to the rate function of the extreme eigenvalue in the GUE. This method is also applied to the Laguerre and Jacobi ensembles, but in thoses cases the expression of the rate function is not so explicit.
Fichier principal
Vignette du fichier
newsum030211.pdf (279.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00276017 , version 1 (27-04-2008)
hal-00276017 , version 2 (04-02-2011)

Identifiants

Citer

Fabrice Gamboa, Alain Rouault. LARGE DEVIATIONS FOR RANDOM SPECTRAL MEASURES AND SUM RULES. 2011. ⟨hal-00276017v2⟩
203 Consultations
323 Téléchargements

Altmetric

Partager

More