Growth rate for the expected value of a generalized random Fibonacci sequence - Archive ouverte HAL
Article Dans Une Revue Journal of Physics A: Mathematical and Theoretical Année : 2009

Growth rate for the expected value of a generalized random Fibonacci sequence

Résumé

A random Fibonacci sequence is defined by the relation g_n = | g_{n-1} +/- g_{n-2} |, where the +/- sign is chosen by tossing a balanced coin for each n. We generalize these sequences to the case when the coin is unbalanced (denoting by p the probability of a +), and the recurrence relation is of the form g_n = |\lambda g_{n-1} +/- g_{n-2} |. When \lambda >=2 and 0 < p <= 1, we prove that the expected value of g_n grows exponentially fast. When \lambda = \lambda_k = 2 cos(\pi/k) for some fixed integer k>2, we show that the expected value of g_n grows exponentially fast for p>(2-\lambda_k)/4 and give an algebraic expression for the growth rate. The involved methods extend (and correct) those introduced in a previous paper by the second author.
Fichier principal
Vignette du fichier
20080306rf-moy.pdf (257 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00273537 , version 1 (15-04-2008)

Identifiants

Citer

Elise Janvresse, Benoît Rittaud, Thierry de La Rue. Growth rate for the expected value of a generalized random Fibonacci sequence. Journal of Physics A: Mathematical and Theoretical, 2009, 42, pp.085005. ⟨10.1088/1751-8113/42/8/085005⟩. ⟨hal-00273537⟩
173 Consultations
99 Téléchargements

Altmetric

Partager

More