An Easy Algorithm For The General Vector Addition System Reachability Problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

An Easy Algorithm For The General Vector Addition System Reachability Problem

Résumé

The reachability problem for Vector Addition Systems (VAS) or equivalently for Petri Nets is a central problem of net theory. The general problem is known decidable by algorithms exclusively based on the classical Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition. This decomposition is difficult and it just has a non-primitive recursive upper-bound complexity. In this paper, we prove that if a configuration is not reachable from an initial configuration, there exists a semi-linear inductive invariant that proves this property. We deduce an easy algorithm for deciding the reachability problem based on two semi-algorithms. A first one that tries to prove the reachability by fairly enumerating the possible paths and a second one that tries to prove the non-reachability by fairly enumerating semi-linear inductive invariants. This algorithm is the very first one that does not require the KLMST decomposition. In particular, this algorithm should be a good candidate to obtain a precise (eventually elementary) upper-bound complexity for the VAS reachability problem.

Domaines

Autre
Fichier principal
Vignette du fichier
main.pdf (195.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00272667 , version 1 (11-04-2008)
hal-00272667 , version 2 (11-04-2008)
hal-00272667 , version 3 (27-05-2008)
hal-00272667 , version 4 (28-05-2008)
hal-00272667 , version 5 (04-06-2008)
hal-00272667 , version 6 (11-07-2008)
hal-00272667 , version 7 (08-09-2008)
hal-00272667 , version 8 (29-10-2008)
hal-00272667 , version 9 (22-01-2009)
hal-00272667 , version 10 (28-04-2009)
hal-00272667 , version 11 (29-04-2009)
hal-00272667 , version 12 (08-06-2009)

Identifiants

  • HAL Id : hal-00272667 , version 3

Citer

Jérôme Leroux. An Easy Algorithm For The General Vector Addition System Reachability Problem. 2008. ⟨hal-00272667v3⟩
314 Consultations
792 Téléchargements

Partager

More