Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths
Résumé
We theoretically study broadband supercontinuum generation in photonic crystal fibers exhibiting two zero dispersion wavelengths and under continuous-wave pumping. We show that when the pump wavelength is located in between the zero-dispersion wavelengths, a wide and uniform spectral broadening is achieved through modulation instability, generation of both blue-shifted and red-shifted dispersive waves and subsequently through soliton self-frequency shift. This supercontinuum is therefore bounded by these two dispersive waves which allow the control of its bandwidth by a suitable tuning of the fiber dispersion. As a relevant example, we predict that broadband (1050-1600 nm) continuous-wave light can be generated in short lengths of microstructured fibers pumped by use of a 10-W Ytterbium fiber laser.