Harnack inequalities and discrete - continuum error estimates for a chain of atoms with two - body interactions
Résumé
In the three-dimensional euclidean space, we consider deformations of an infinite linear chain of atoms where each atom interacts with all others through a two-body potential. We compute the effect of an external force applied to the chain. At equilibrium, the positions of the particles satisfy an Euler-Lagrange equation. For large classes of potentials, we prove that every solution is well approximated by the solution of a continuous model. We establish an error estimate between the discrete and the continuous solution based on a Harnack lemma of independent interest. Finally we apply our results to some Lennard-Jones potentials.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...