Harnack inequalities and discrete - continuum error estimates for a chain of atoms with two - body interactions - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2009

Harnack inequalities and discrete - continuum error estimates for a chain of atoms with two - body interactions

Résumé

In the three-dimensional euclidean space, we consider deformations of an infinite linear chain of atoms where each atom interacts with all others through a two-body potential. We compute the effect of an external force applied to the chain. At equilibrium, the positions of the particles satisfy an Euler-Lagrange equation. For large classes of potentials, we prove that every solution is well approximated by the solution of a continuous model. We establish an error estimate between the discrete and the continuous solution based on a Harnack lemma of independent interest. Finally we apply our results to some Lennard-Jones potentials.
Fichier principal
Vignette du fichier
BDM-260308.pdf (294.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00267954 , version 1 (28-03-2008)

Identifiants

  • HAL Id : hal-00267954 , version 1

Citer

Rafael Benguria, Jean Dolbeault, Régis Monneau. Harnack inequalities and discrete - continuum error estimates for a chain of atoms with two - body interactions. Journal of Statistical Physics, 2009, 134, pp.27-51. ⟨hal-00267954⟩
248 Consultations
70 Téléchargements

Partager

More