Volterra differential equations with singular kernels - Archive ouverte HAL
Article Dans Une Revue Proceeding of the Workshop on Mathematical Physic and Stochastic Analisys Année : 2000

Volterra differential equations with singular kernels

Laure Coutin
  • Fonction : Auteur
  • PersonId : 1048296
Laurent Decreusefond

Résumé

Motivated by the potential applications to the fractional Brownian motion, we study Volterra stochastic differential of the form~: \begin{equation} X_t = x+ \int_0^tK(t,s)b(s,X_s)ds + \int_0^tK(t,s) \sigma(s,X_s) \,dB_s ,\tag{E} \label{eq:sdefbm} \end{equation} where $(B_s, \, s\in [0,1])$ is a one-dimensional standard Brownian motion and $(K(t,s), \, t,s \in [0,1])$ is a deterministic kernel whose properties will be precised below but for which we don't assume any boundedness property.
Fichier principal
Vignette du fichier
lisboa.pdf (130.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00265469 , version 1 (24-03-2017)

Identifiants

Citer

Laure Coutin, Laurent Decreusefond. Volterra differential equations with singular kernels. Proceeding of the Workshop on Mathematical Physic and Stochastic Analisys, 2000, pp.1. ⟨hal-00265469⟩
207 Consultations
167 Téléchargements

Altmetric

Partager

More